{ a:Id  Id  Id. b:Id. S:Id List. G:Graph(S). k:Knd.
    (graph-rcvset(a;b;S;G;k)
     i,j:Id
         ((i  S)
          (j  S)
          (ij)G
          (k = rcv((link(a i j) from i to j),b)))) }

{ Proof }



Definitions occuring in Statement :  graph-rcvset: graph-rcvset(a;b;S;G;k) id-graph-edge: (ij)G id-graph: Graph(S) rcv: rcv(l,tg) Knd: Knd mk_lnk: (link(n) from i to j) Id: Id assert: b all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q apply: f a function: x:A  B[x] list: type List equal: s = t l_member: (x  l)
Definitions :  member: t  T id-graph: Graph(S) le: A  B exists: x:A. B[x] false: False not: A cand: A c B and: P  Q subtype: S  T prop: bfalse: ff ifthenelse: if b then t else f fi  btrue: tt band: p  q implies: P  Q all: x:A. B[x] graph-rcvset: graph-rcvset(a;b;S;G;k) l_member: (x  l) guard: {T} sq_type: SQType(T) id-graph-edge: (ij)G rev_implies: P  Q nat: iff: P  Q unit: Unit bool: it:
Lemmas :  id-graph-edge-implies-member Knd_sq and_functionality_wrt_iff assert_of_band select_wf length_wf1 nat_wf assert-deq-member bfalse_wf not_functionality_wrt_iff assert_of_bnot eqff_to_assert not_wf bnot_wf assert-eq-id eqtt_to_assert iff_transitivity bool_wf l_member_wf id-deq_wf deq-member_wf eq_id_wf band_wf assert_wf

\mforall{}a:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Id.  \mforall{}b:Id.  \mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}k:Knd.
    (\muparrow{}graph-rcvset(a;b;S;G;k)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}i,j:Id.  ((i  \mmember{}  S)  \mwedge{}  (j  \mmember{}  S)  \mwedge{}  (i{}\mrightarrow{}j)\mmember{}G  \mwedge{}  (k  =  rcv((link(a  i  j)  from  i  to  j),b))))


Date html generated: 2011_08_10-AM-07_50_47
Last ObjectModification: 2010_09_24-PM-09_19_38

Home Index