{ [Info:Type]. [locs:Id List]. [hdrs:Name List].
    Base(hdrs)@locs  EClass(Info) supposing Info r (Name  Top) }

{ Proof }



Definitions occuring in Statement :  base-locs-headers: Base(hdrs)@locs eclass: EClass(A[eo; e]) Id: Id name: Name subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] top: Top member: t  T product: x:A  B[x] list: type List universe: Type
Definitions :  fpf-sub: f  g ma-state: State(ds) fpf-dom: x  dom(f) class-program: ClassProgram(T) it: inr: inr x  IdLnk: IdLnk rationals: append: as @ bs locl: locl(a) Knd: Knd infix_ap: x f y so_lambda: x.t[x] tag-by: zT rev_implies: P  Q ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B true: True fpf-cap: f(x)?z filter: filter(P;l) intensional-universe: IType natural_number: $n void: Void real: grp_car: |g| select: l[i] length: ||as|| strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  sq_type: SQType(T) less_than: a < b cand: A c B cons: [car / cdr] nil: [] false: False lt_int: i <z j le_int: i z j nat: exists: x:A. B[x] deq: EqDecider(T) limited-type: LimitedType pair: <a, b> bfalse: ff btrue: tt prop: uiff: uiff(P;Q) and: P  Q iff: P  Q not: A deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q bor: p q bnot: b int: unit: Unit empty-bag: {} single-bag: {x} so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} l_member: (x  l) fpf: a:A fp-B[a] es-E-interface: E(X) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b name-deq: NameDeq es-info: info(e) pi1: fst(t) subtype: S  T eq_atom: eq_atom$n(x;y) atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y record-select: r.x dep-isect: Error :dep-isect,  record+: record+ id-deq: IdDeq es-loc: loc(e) deq-member: deq-member(eq;x;L) band: p  q ifthenelse: if b then t else f fi  event_ordering: EO lambda: x.A[x] bool: all: x:A. B[x] eclass: EClass(A[eo; e]) universe: Type Id: Id uall: [x:A]. B[x] list: type List uimplies: b supposing a product: x:A  B[x] top: Top name: Name subtype_rel: A r B isect: x:A. B[x] member: t  T equal: s = t event-ordering+: EO+(Info) function: x:A  B[x] es-E: E bag: bag(T) base-locs-headers: Base(hdrs)@locs axiom: Ax Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  deq-member_wf name_wf es-info_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-loc_wf id-deq_wf Id_wf band_wf ifthenelse_wf bag_wf es-E_wf event-ordering+_wf subtype_rel_wf top_wf member_wf pi1_wf_top name-deq_wf bool_wf l_member_wf iff_transitivity assert_wf iff_weakening_uiff eqtt_to_assert assert-deq-member not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_iff bnot_wf nat_wf length_wf1 select_wf intensional-universe_wf event_ordering_wf subtype_rel_record+ false_wf subtype_rel_function subtype_rel_transitivity single-bag_wf empty-bag_wf

\mforall{}[Info:Type].  \mforall{}[locs:Id  List].  \mforall{}[hdrs:Name  List].
    Base(hdrs)@locs  \mmember{}  EClass(Info)  supposing  Info  \msubseteq{}r  (Name  \mtimes{}  Top)


Date html generated: 2011_08_17-PM-04_15_38
Last ObjectModification: 2011_04_26-PM-04_37_12

Home Index