{ [L:{dv:ClassDerivation| WF(dv)}  List]. [n:]. [m:{m:| 0 < (n + m)} ].
    (cdv-argtype(pack-cdv-args(n;m;L))
       = (k:||L||  bag(map(dv.hd(cdv-types(dv));L)[k]))) supposing 
       ((||L|| = (n + m)) and 
       (dvL.||cdv-types(dv)|| = 1)) }

{ Proof }



Definitions occuring in Statement :  pack-cdv-args: pack-cdv-args(n;m;L) cdv-wf: WF(dv) cdv-argtype: cdv-argtype(dv) cdv-types: cdv-types(dv) classderiv: ClassDerivation select: l[i] hd: hd(l) map: map(f;as) length: ||as|| int_seg: {i..j} nat: uimplies: b supposing a uall: [x:A]. B[x] less_than: a < b set: {x:A| B[x]}  lambda: x.A[x] function: x:A  B[x] list: type List add: n + m natural_number: $n int: universe: Type equal: s = t l_all: (xL.P[x]) bag: bag(T)
Definitions :  l_member: (x  l) real: grp_car: |g| subtype: S  T limited-type: LimitedType eclass: EClass(A[eo; e]) pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] implies: P  Q false: False not: A le: A  B add: n + m axiom: Ax pack-cdv-args: pack-cdv-args(n;m;L) cdv-argtype: cdv-argtype(dv) list: type List uall: [x:A]. B[x] less_than: a < b nat: so_lambda: x.t[x] set: {x:A| B[x]}  cdv-wf: WF(dv) classderiv: ClassDerivation l_all: (xL.P[x]) uimplies: b supposing a isect: x:A. B[x] member: t  T int: prop: cdv-types: cdv-types(dv) hd: hd(l) lambda: x.A[x] map: map(f;as) select: l[i] bag: bag(T) length: ||as|| natural_number: $n int_seg: {i..j} function: x:A  B[x] list-to-cdv: list-to-cdv(L) universe: Type equal: s = t sqequal: s ~ t rev_uimplies: rev_uimplies(P;Q) le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q true: True lt_int: i <z j decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  listp: A List assert: b tl: tl(l) classderiv_ind: classderiv_ind sq_type: SQType(T) append: as @ bs iff: P  Q combination: Combination(n;T) void: Void top: Top concat: concat(ll) cons: [car / cdr] nil: [] lelt: i  j < k rationals: cdvpair-fst: cdvpair-fst(x) classderiv_ind_cdvpair: classderiv_ind_cdvpair_compseq_tag_def cdvpair-snd: cdvpair-snd(x) cdvbase?: cdvbase?(x) cdvpair?: cdvpair?(x) cdvdelay?: cdvdelay?(x) cdvcomb?: cdvcomb?(x) cdvreccomb?: cdvreccomb?(x) cdvdelay-X: cdvdelay-X(x) classderiv_ind_cdvdelay: classderiv_ind_cdvdelay_compseq_tag_def cdvdelay-dummy: cdvdelay-dummy(x) nth_tl: nth_tl(n;as) firstn: firstn(n;as) cdvpair: cdvpair(fst;snd) it: cdvdelay: cdvdelay(X;dummy) bfalse: ff btrue: tt unit: Unit union: left + right bool: let: let minus: -n subtract: n - m int_iseg: {i...j} rev_implies: P  Q squash: T
Lemmas :  append_firstn_lastn concat_append squash_wf map_append int_iseg_wf length_firstn rev_implies_wf iff_wf pos_length2 length_nth_tl list-to-cdv_wf bool_wf eq_int_wf bnot_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert listp_wf subtype_rel_wf nth_tl_wf cdvdelay_wf firstn_wf cdvpair_wf ge_wf le_wf not_wf pos_length3 length-map cdv-types-non-empty top_wf member_wf concat-cons l_all_cons length_wf_nat concat_wf append_wf subtype_base_sq list_subtype_base non_neg_length cdv-types-list-to-cdv false_wf ifthenelse_wf true_wf assert_of_lt_int assert_wf lt_int_wf classderiv_wf cdv-wf_wf nat_wf l_member_wf cdv-types_wf length_wf1 l_all_wf2 l_all_wf int_seg_wf bag_wf select_wf map_wf hd_wf cdv-argtype_wf pack-cdv-args_wf

\mforall{}[L:\{dv:ClassDerivation|  WF(dv)\}    List].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\{m:\mBbbN{}|  0  <  (n  +  m)\}  ].
    (cdv-argtype(pack-cdv-args(n;m;L))
          =  (k:\mBbbN{}||L||  {}\mrightarrow{}  bag(map(\mlambda{}dv.hd(cdv-types(dv));L)[k])))  supposing 
          ((||L||  =  (n  +  m))  and 
          (\mforall{}dv\mmember{}L.||cdv-types(dv)||  =  1))


Date html generated: 2011_08_17-PM-04_32_34
Last ObjectModification: 2011_06_18-AM-11_43_42

Home Index