{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X).
      [P:E(X)  ]
        ((b:E(X). ((a:E(X). (P[a]) supposing (((a = b)) and a (X;f) b))  P\000C[b]))
         (e:E(X). P[e])) }

{ Proof }



Definitions occuring in Statement :  cut-order: a (X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: b supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s] all: x:A. B[x] not: A implies: P  Q function: x:A  B[x] universe: Type equal: s = t
Definitions :  record: record(x.T[x]) deq-member: deq-member(eq;x;L) minus: -n infix_ap: x f y subtract: n - m es-causl: (e < e') grp_car: |g| natural_number: $n real: rationals: int: add: n + m nat: exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) atom: Atom es-base-E: es-base-E(es) token: "$token" record-select: r.x void: Void false: False true: True fset-member: a  s bool: Knd: Knd IdLnk: IdLnk Id: Id sq_stable: SqStable(P) or: P  Q guard: {T} list: type List l_member: (x  l) union: left + right so_lambda: x.t[x] subtype: S  T top: Top es-E: E lambda: x.A[x] limited-type: LimitedType event_ordering: EO member: t  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B cut-order: a (X;f) b equal: s = t not: A event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] sys-antecedent: sys-antecedent(es;Sys) uall: [x:A]. B[x] es-E-interface: E(X) prop: universe: Type implies: P  Q so_apply: x[s] apply: f a all: x:A. B[x] function: x:A  B[x] uimplies: b supposing a isect: x:A. B[x] eclass-val: X(e) es-le: e loc e'  es-locl: (e <loc e') es-p-le: e p e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) es-causle: e c e' btrue: tt sq_type: SQType(T) isl: isl(x) can-apply: can-apply(f;x) in-eclass: e  X
Lemmas :  subtype_base_sq bool_subtype_base bool_wf assert_elim assert_wf in-eclass_wf cut-order-causle ge_wf nat_properties es-E-interface_wf cut-order_wf not_wf event-ordering+_wf eclass_wf sys-antecedent_wf uall_wf event-ordering+_inc es-E_wf top_wf uiff_inversion cut-order_witness es-base-E_wf subtype_rel_self es-causl-swellfnd guard_wf nat_wf nat_ind_tp le_wf false_wf member_wf es-causl_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}b:E(X).  ((\mforall{}a:E(X).  (P[a])  supposing  ((\mneg{}(a  =  b))  and  a  \mleq{}(X;f)  b))  {}\mRightarrow{}  P[b]))  {}\mRightarrow{}  (\mforall{}e:E(X).  P[e\000C]))


Date html generated: 2011_08_16-PM-05_56_23
Last ObjectModification: 2011_06_20-AM-01_39_17

Home Index