{ [A,B:Type]. [b1,b2:bag(dataflow(A;bag(B)))].
    (dataflow-bags-equiv(A;B;b1;b2)
     {m:A
          dataflow-bags-equiv(A;B;bag-map(x.(fst(x(m)));
                                  b1);bag-map(x.(fst(x(m)));b2))}) }

{ Proof }



Definitions occuring in Statement :  dataflow-bags-equiv: dataflow-bags-equiv(A;B;b1;b2) dataflow-ap: df(a) dataflow: dataflow(A;B) uall: [x:A]. B[x] guard: {T} pi1: fst(t) all: x:A. B[x] implies: P  Q lambda: x.A[x] universe: Type bag-map: bag-map(f;bs) bag: bag(T)
Definitions :  length: ||as|| add: n + m true: True map: map(f;as) subtype: S  T sqequal: s ~ t primrec: primrec(n;b;c) nat: top: Top corec: corec(T.F[T]) l_member: (x  l) void: Void false: False list: type List so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] set: {x:A| B[x]}  quotient: x,y:A//B[x; y] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B prop: axiom: Ax last: last(L) dataflow-ap: df(a) pi1: fst(t) bag-map: bag-map(f;bs) bag-combine: xbs.f[x] listp: A List guard: {T} equal: s = t universe: Type uall: [x:A]. B[x] isect: x:A. B[x] implies: P  Q dataflow-bags-equiv: dataflow-bags-equiv(A;B;b1;b2) function: x:A  B[x] member: t  T lambda: x.A[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  MaAuto: Error :MaAuto,  data-stream: data-stream(P;L) null: null(as) assert: b not: A bag: bag(T) dataflow: dataflow(A;B) all: x:A. B[x] AssertBY: Error :AssertBY,  Unfold: Error :Unfold,  tactic: Error :tactic,  isect2: T1  T2 b-union: A  B sq_type: SQType(T) lt_int: i <z j le_int: i z j bfalse: ff btrue: tt set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit ifthenelse: if b then t else f fi  squash: T tl: tl(l) hd: hd(l) rev_implies: P  Q iff: P  Q fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) permutation: permutation(T;L1;L2) nil: [] fpf-cap: f(x)?z bool: intensional-universe: IType sq_stable: SqStable(P) apply: f a so_apply: x[s] union: left + right or: P  Q eq_knd: a = b fpf-dom: x  dom(f) pi2: snd(t) limited-type: LimitedType base: Base ndlist: ndlist(T) THENM: Error :THENM,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  cons: [car / cdr]
Lemmas :  data-stream-cons cons_wf_listp intensional-universe_wf null_wf permutation_wf subtype_rel_list bag-combine-map iff_wf rev_implies_wf last_wf pi1_wf_top bag-combine_wf pi2_wf squash_wf last-cons ifthenelse_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_null eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf subtype_base_sq list_subtype_base nat_wf length_wf_nat dataflow_subtype subtype_rel_self dataflow_wf bag_wf pi1_wf dataflow-ap_wf bag-map_wf listp_wf dataflow-bags-equiv_wf assert_wf not_wf false_wf data-stream_wf pos_length2 null_wf3 top_wf member_wf subtype_rel_wf null-data-stream listp_properties true_wf

\mforall{}[A,B:Type].  \mforall{}[b1,b2:bag(dataflow(A;bag(B)))].
    (dataflow-bags-equiv(A;B;b1;b2)
    {}\mRightarrow{}  \{\mforall{}m:A.  dataflow-bags-equiv(A;B;bag-map(\mlambda{}x.(fst(x(m)));b1);bag-map(\mlambda{}x.(fst(x(m)));b2))\})


Date html generated: 2011_08_16-AM-09_49_00
Last ObjectModification: 2011_04_27-PM-04_17_31

Home Index