{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [X:EClass(A)]. [P:A  ]. [e:E].
    uiff(e  X|a.P[a];{(e  X)  (P[X(e)])}) }

{ Proof }



Definitions occuring in Statement :  es-interface-filter: X|a.P[a] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P  Q function: x:A  B[x] universe: Type
Definitions :  cand: A c B is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) tag-by: zT record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B list: type List fpf-cap: f(x)?z intensional-universe: IType cond-class: [X?Y] union: left + right or: P  Q eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) es-E-interface: E(X) eclass-val: X(e) fpf: a:A fp-B[a] so_apply: x[s] so_lambda: x.t[x] es-interface-filter: X|a.P[a] in-eclass: e  X strong-subtype: strong-subtype(A;B) set: {x:A| B[x]}  le: A  B ge: i  j  not: A less_than: a < b rev_implies: P  Q iff: P  Q implies: P  Q prop: pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b guard: {T} uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) bag: bag(T) bool: subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  eclass-compose1: f o X Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) sqequal: s ~ t bag-filter: [xb|p[x]] bag-only: only(bs) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} lt_int: i <z j le_int: i z j bfalse: ff real: grp_car: |g| nat: limited-type: LimitedType btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) bnot: b unit: Unit int: eq_bool: p =b q single-bag: {x} RepUR: Error :RepUR
Lemmas :  bag-only_wf eq_int_wf nat_wf bag-filter_wf bag-size_wf not_wf bnot_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert bag-size-one bag_wf assert_wf guard_wf assert_witness uiff_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf bool_wf event-ordering+_wf eclass_wf es-interface-filter_wf in-eclass_wf top_wf member_wf subtype_rel_wf es-interface-top false_wf ifthenelse_wf true_wf eclass-val_wf rev_implies_wf iff_wf intensional-universe_wf es-interface-subtype_rel sq_stable__assert

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  X|a.P[a];\{(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (\muparrow{}P[X(e)])\})


Date html generated: 2011_08_16-PM-04_28_42
Last ObjectModification: 2011_06_20-AM-00_52_19

Home Index