{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:E(X)  E(X)].
    [e:E(X)]. (prior-f-fixedpoints(e)  {e':E(X)| (f e') = e'}  List) 
    supposing x:E(X). f x c x }

{ Proof }



Definitions occuring in Statement :  es-prior-fixedpoints: prior-f-fixedpoints(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causle: e c e' es-E: E uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] member: t  T set: {x:A| B[x]}  apply: f a function: x:A  B[x] list: type List universe: Type equal: s = t
Definitions :  implies: P  Q strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) so_lambda: x.t[x] filter: filter(P;l) l_member: (x  l) fpf: a:A fp-B[a] axiom: Ax es-prior-fixedpoints: prior-f-fixedpoints(e) list: type List infix_ap: x f y es-causl: (e < e') or: P  Q set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b prop: es-causle: e c e' uimplies: b supposing a union: left + right es-E-interface: E(X) subtype: S  T subtype_rel: A r B atom: Atom apply: f a token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  es-fix: f**(e) list_ind: list_ind def length: ||as|| select: l[i] cand: A c B l_all: (xL.P[x]) rev_implies: P  Q es-le: e loc e'  es-locl: (e <loc e') es-p-le: e p e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) record: record(x.T[x]) tl: tl(l) hd: hd(l) nil: [] cons: [car / cdr] eclass-val: X(e) append: as @ bs eq_bool: p =b q eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-prior-interface: prior(X) in-eclass: e  X sq_type: SQType(T) limited-type: LimitedType pair: <a, b> lt_int: i <z j le_int: i z j bfalse: ff btrue: tt iff: P  Q bimplies: p  q band: p  q bor: p q es-eq-E: e = e' bnot: b unit: Unit minus: -n bool: subtract: n - m grp_car: |g| natural_number: $n void: Void false: False real: rationals: int: add: n + m nat: guard: {T} exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) MaAuto: Error :MaAuto,  BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  SplitOn: Error :SplitOn,  CollapseTHENA: Error :CollapseTHENA,  Repeat: Error :Repeat,  D: Error :D,  RepeatFor: Error :RepeatFor
Lemmas :  es-fix-equal es-fix-causle ge_wf nat_properties es-causl-swellfnd guard_wf nat_wf nat_ind_tp le_wf not_wf false_wf es-causl_wf bool_wf iff_weakening_uiff uiff_transitivity eqtt_to_assert assert-es-eq-E-2 eqff_to_assert assert_wf assert_of_bnot not_functionality_wrt_uiff es-eq-E_wf bnot_wf es-prior-interface_wf in-eclass_wf es-prior-interface_wf0 es-prior-interface_wf1 es-interface-subtype_rel2 subtype_rel_wf append_wf list-subtype l_member_wf eclass-val_wf2 es-prior-interface-causl l_all_wf subtype_base_sq set_subtype_base length_wf_nat length_wf1 es-fix_wf2 eclass_wf top_wf event-ordering+_wf es-causle_wf subtype_rel_self event-ordering+_inc es-E-interface-subtype_rel list-set-type2 member_wf es-E_wf es-E-interface_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    \mforall{}[e:E(X)].  (prior-f-fixedpoints(e)  \mmember{}  \{e':E(X)|  (f  e')  =  e'\}    List)  supposing  \mforall{}x:E(X).  f  x  c\mleq{}  x


Date html generated: 2011_08_16-PM-05_43_30
Last ObjectModification: 2011_06_20-AM-01_31_36

Home Index