{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E].
    prior(X)(e) = if pred(e)  X then pred(e) else prior(X)(pred(e)) fi  
    supposing e  prior(X) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-pred: pred(e) es-E: E assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] top: Top uimplies: b supposing a member: t  T prop: all: x:A. B[x] so_lambda: x y.t[x; y] ifthenelse: if b then t else f fi  implies: P  Q btrue: tt bfalse: ff and: P  Q so_apply: x[s1;s2] iff: P  Q cand: A c B bool: unit: Unit or: P  Q not: A false: False decidable: Dec(P) es-locl: (e <loc e') subtype: S  T it:
Lemmas :  assert_wf in-eclass_wf es-prior-interface_wf es-interface-subtype_rel2 es-E-interface_wf es-E_wf event-ordering+_inc event-ordering+_wf top_wf eclass_wf es-is-prior-interface-pred es-pred_wf bool_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot es-prior-interface-val es-locl-iff eclass-val_wf2 es-E-interface-subtype_rel es-pred-locl decidable__es-locl btrue_neq_bfalse assert_elim not_assert_elim es-locl_transitivity2 es-le_weakening es-locl-total es-loc-pred

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    prior(X)(e)  =  if  pred(e)  \mmember{}\msubb{}  X  then  pred(e)  else  prior(X)(pred(e))  fi    supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)


Date html generated: 2011_08_16-PM-04_49_06
Last ObjectModification: 2011_06_20-AM-01_07_41

Home Index