{ [Info,A,B:Type]. [R:A  B  ]. [X:EClass(A)]. [Y:EClass(B)].
    (es-prior-match(R; X; Y)
    = p.if R (fst(p)) (snd(p)) then {p} else {} fi [X;Y]) }

{ Proof }



Definitions occuring in Statement :  es-prior-match: es-prior-match(R; X; Y) es-interface-pair-prior: X;Y es-filter-image: f[X] eclass: EClass(A[eo; e]) ifthenelse: if b then t else f fi  bool: uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) apply: f a lambda: x.A[x] function: x:A  B[x] product: x:A  B[x] universe: Type equal: s = t single-bag: {x} empty-bag: {}
Definitions :  bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) real: grp_car: |g| nat: true: True bag-only: only(bs) rev_implies: P  Q iff: P  Q es-prior-val: (X)' atom: Atom es-base-E: es-base-E(es) token: "$token" es-E-interface: E(X) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) set_eq: = set_le: grp_eq: = rng_eq: = eclass-val: X(e) natural_number: $n bag-size: bag-size(bs) record-select: r.x set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} false: False limited-type: LimitedType prop: bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q in-eclass: e  X assert: b bnot: b int: unit: Unit union: left + right implies: P  Q eclass-compose1: f o X sv-class: Singlevalued(X) so_lambda: x.t[x] void: Void subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) top: Top bag: bag(T) pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] axiom: Ax es-interface-pair-prior: X;Y empty-bag: {} single-bag: {x} pi2: snd(t) pi1: fst(t) apply: f a ifthenelse: if b then t else f fi  lambda: x.A[x] es-filter-image: f[X] es-prior-match: es-prior-match(R; X; Y) product: x:A  B[x] equal: s = t universe: Type bool: function: x:A  B[x] uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) member: t  T isect: x:A. B[x] RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try
Lemmas :  bool_wf assert_of_bnot eqff_to_assert uiff_transitivity not_wf assert_wf eqtt_to_assert es-E_wf le_wf event-ordering+_wf sv-class_wf es-filter-image_wf ifthenelse_wf bag_wf single-bag_wf es-interface-pair-prior_wf empty-bag_wf pi2_wf pi1_wf_top es-prior-match_wf es-interface-extensionality event-ordering+_inc eclass_wf bnot_wf in-eclass_wf member_wf subtype_rel_wf es-interface-top false_wf eclass-val_wf top_wf es-interface-subtype_rel2 es-base-E_wf subtype_rel_self es-prior-val_wf iff_wf eq_int_wf true_wf bag-size_wf nat_wf band_wf bag-only_wf assert_of_eq_int

\mforall{}[Info,A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (es-prior-match(R;  X;  Y)  =  \mlambda{}p.if  R  (fst(p))  (snd(p))  then  \{p\}  else  \{\}  fi  [X;Y])


Date html generated: 2011_08_16-PM-05_41_49
Last ObjectModification: 2011_06_20-AM-01_30_38

Home Index