{ [M:Type  Type]. [r:pRunType(P.M[P])]. [t:]. [n:].
    lg-is-source(run-intransit(r;t);first-choosable(r;t)) 
    supposing lg-is-source(run-intransit(r;t);n) }

{ Proof }



Definitions occuring in Statement :  first-choosable: first-choosable(r;t) run-intransit: run-intransit(r;t) pRunType: pRunType(T.M[T]) lg-is-source: lg-is-source(g;i) assert: b nat_plus: nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type
Definitions :  eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) void: Void decide: case b of inl(x) =s[x] | inr(y) =t[y] is-dag: is-dag(g) ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B false: False not: A exists: x:A. B[x] rev_implies: P  Q iff: P  Q subtract: n - m search: search(k;P) lt_int: i <z j ifthenelse: if b then t else f fi  grp_car: |g| less_than: a < b lelt: i  j < k le: A  B int: set: {x:A| B[x]}  real: rationals: subtype: S  T bool: natural_number: $n int_seg: {i..j} product: x:A  B[x] and: P  Q let: let first-choosable: first-choosable(r;t) implies: P  Q prop: assert: b uimplies: b supposing a nat: all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] so_lambda: x.t[x] apply: f a universe: Type uall: [x:A]. B[x] nat_plus: pRunType: pRunType(T.M[T]) member: t  T Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  lg-is-source: lg-is-source(g;i) lambda: x.A[x] lg-size: lg-size(g) D: Error :D,  run-intransit: run-intransit(r;t) so_apply: x[s] pInTransit: pInTransit(P.M[P]) ldag: LabeledDAG(T) equal: s = t CollapseTHENA: Error :CollapseTHENA,  RepUR: Error :RepUR,  axiom: Ax tactic: Error :tactic,  it: unit: Unit limited-type: LimitedType bfalse: ff le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b guard: {T} btrue: tt sq_type: SQType(T) proper-iseg: L1 < L2 iseg: l1  l2 gt: i > j tag-by: zT or: P  Q labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B list: type List true: True fpf-cap: f(x)?z add: n + m pair: <a, b> top: Top union: left + right length: ||as|| SplitOn: Error :SplitOn,  MaAuto: Error :MaAuto,  minus: -n inr: inr x  es-E-interface: E(X) l_member: (x  l) inl: inl x 
Lemmas :  true_wf uiff_inversion lg-is-source_wf false_wf not_wf subtype_rel_wf nat_properties lg-size_wf search_wf int_seg_properties bool_cases bool_wf subtype_base_sq bool_subtype_base iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int lt_int_wf le_int_wf bnot_wf btrue_neq_bfalse assert_elim bfalse_wf it_wf unit_wf pRunType_wf nat_plus_wf run-intransit_wf ldag_wf search_property le_wf int_seg_wf lg-size_wf_dag nat_wf member_wf assert_wf pInTransit_wf lg-is-source_wf_dag

\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[t:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].
    \muparrow{}lg-is-source(run-intransit(r;t);first-choosable(r;t)) 
    supposing  \muparrow{}lg-is-source(run-intransit(r;t);n)


Date html generated: 2011_08_17-PM-03_43_23
Last ObjectModification: 2011_06_18-AM-11_24_21

Home Index