{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)]. [e:E].
    (X,Y)(e) ~ <X(e), Y(e)supposing e  (X,Y) }

{ Proof }



Definitions occuring in Statement :  es-interface-pair: (X,Y) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top pair: <a, b> universe: Type sqequal: s ~ t
Definitions :  bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b exists: x:A. B[x] so_lambda: x.t[x] sq_type: SQType(T) single-bag: {x} empty-bag: {} bag-only: only(bs) false: False limited-type: LimitedType bfalse: ff btrue: tt and: P  Q uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit union: left + right implies: P  Q bool: eclass-compose2: eclass-compose2(f;X;Y) pair: <a, b> eclass-val: X(e) void: Void subtype: S  T atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" lambda: x.A[x] es-E-interface: E(X) subtype_rel: A r B quotient: x,y:A//B[x; y] decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  product: x:A  B[x] es-interface-pair: (X,Y) all: x:A. B[x] in-eclass: e  X dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) function: x:A  B[x] set: {x:A| B[x]}  record-select: r.x top: Top equal: s = t prop: assert: b universe: Type sqequal: s ~ t so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] event-ordering+: EO+(Info) event_ordering: EO es-E: E uimplies: b supposing a isect: x:A. B[x] member: t  T RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto
Lemmas :  event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf top_wf subtype_rel_wf event-ordering+_wf es-interface-pair_wf es-interface-subtype_rel2 es-interface-top member_wf eclass_wf in-eclass_wf assert_wf is-interface-pair bool_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf eclass-val_wf single-bag_wf bag_wf ifthenelse_wf bag-only_wf subtype_base_sq product_subtype_base isect_subtype_base btrue_neq_bfalse assert_elim band_wf not_assert_elim

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].  \mforall{}[e:E].
    (X,Y)(e)  \msim{}  <X(e),  Y(e)>  supposing  \muparrow{}e  \mmember{}\msubb{}  (X,Y)


Date html generated: 2011_08_16-PM-05_35_52
Last ObjectModification: 2011_06_20-AM-01_28_18

Home Index