{ [Info,A,B:Type].
    es:EO+(Info). X:EClass(A). Y:EClass(B). e:E.
      (e  (X | Y)  (e  X)  (e  Y)) }

{ Proof }



Definitions occuring in Statement :  es-or-latest: (X | Y) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q or: P  Q universe: Type
Definitions :  cond-class: [X?Y] axiom: Ax natural_number: $n so_apply: x[s] guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) true: True false: False limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit bool: fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) cand: A c B prop: void: Void es-E-interface: E(X) uimplies: b supposing a quotient: x,y:A//B[x; y] decide: case b of inl(x) =s[x] | inr(y) =t[y] set: {x:A| B[x]}  rev_implies: P  Q primed-class: Prior(X) latest-pair: (X&Y) es-interface-union: X+Y assert: b es-or-latest: (X | Y) lambda: x.A[x] subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) equal: s = t member: t  T event_ordering: EO es-E: E uall: [x:A]. B[x] isect: x:A. B[x] iff: P  Q and: P  Q product: x:A  B[x] implies: P  Q or: P  Q union: left + right universe: Type event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] function: x:A  B[x] all: x:A. B[x] MaAuto: Error :MaAuto,  in-eclass: e  X CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  Unfold: Error :Unfold,  tactic: Error :tactic
Lemmas :  assert_wf rev_implies_wf iff_wf es-is-interface-union is-latest-pair or_functionality_wrt_iff latest-pair_wf es-interface-union_wf iff_transitivity iff_functionality_wrt_iff event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf eclass_wf in-eclass_wf member_wf es-interface-top es-interface-subtype_rel2 top_wf subtype_rel_wf primed-class_wf bool_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf true_wf false_wf

\mforall{}[Info,A,B:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(A).  \mforall{}Y:EClass(B).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  (X  |\msupminus{}  Y)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  Y))


Date html generated: 2011_08_16-PM-05_37_50
Last ObjectModification: 2011_06_20-AM-01_28_34

Home Index