{ [A:Type]. [eq:EqDecider(A)]. [f,g:a:A fp-Top]. [L:A List].
    uiff(l_disjoint(A;fst(f  g);L);l_disjoint(A;fst(f);L)
     l_disjoint(A;fst(g);L)) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf: a:A fp-B[a] uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top pi1: fst(t) and: P  Q list: type List universe: Type l_disjoint: l_disjoint(T;l1;l2) deq: EqDecider(T)
Definitions :  l_intersection: l_intersection(eq;L1;L2) append: as @ bs cons: [car / cdr] nil: [] cand: A c B apply: f a so_apply: x[s] union: left + right or: P  Q rev_implies: P  Q fpf-join: f  g subtype: S  T guard: {T} strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b subtype_rel: A r B pi1: fst(t) iff: P  Q l_member: (x  l) prop: pair: <a, b> void: Void false: False implies: P  Q not: A l_disjoint: l_disjoint(T;l1;l2) uimplies: b supposing a and: P  Q uiff: uiff(P;Q) list: type List product: x:A  B[x] lambda: x.A[x] set: {x:A| B[x]}  assert: b all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] fpf: a:A fp-B[a] so_lambda: x.t[x] top: Top universe: Type member: t  T deq: EqDecider(T) equal: s = t tactic: Error :tactic,  btrue: tt sq_type: SQType(T) bool: true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  fpf-dom: x  dom(f) tag-by: zT record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B fpf-sub: f  g fpf-cap: f(x)?z
Lemmas :  false_wf ifthenelse_wf true_wf fpf-join-dom subtype_base_sq bool_subtype_base bool_wf assert_elim assert_wf fpf-dom_wf l_disjoint-fpf-dom member_wf top_wf fpf_wf fpf-trivial-subtype-top subtype_rel_wf l_member_wf pi1_wf_top l_disjoint_wf uiff_wf deq_wf fpf-join_wf not_wf rev_implies_wf iff_wf uiff_inversion

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Top].  \mforall{}[L:A  List].
    uiff(l\_disjoint(A;fst(f  \moplus{}  g);L);l\_disjoint(A;fst(f);L)  \mwedge{}  l\_disjoint(A;fst(g);L))


Date html generated: 2011_08_10-AM-08_11_25
Last ObjectModification: 2011_06_18-AM-08_26_50

Home Index