{ [Info:Type]
    es:EO+(Info)
      [T:Type]
        X:EClass(T). e:E.
          (e  (X)
           ((e  X)  ((X)(e) = X(e)))
               (((e  (X)')  (e  X))  ((X)(e) = (X)'(e)))) }

{ Proof }



Definitions occuring in Statement :  es-latest-val: (X) es-prior-val: (X)' eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q not: A or: P  Q and: P  Q universe: Type equal: s = t
Definitions :  lambda: x.A[x] subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ bag: bag(T) uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x y.t[x; y] all: x:A. B[x] es-E: E event_ordering: EO iff: P  Q and: P  Q product: x:A  B[x] implies: P  Q function: x:A  B[x] or: P  Q union: left + right eclass: EClass(A[eo; e]) universe: Type event-ordering+: EO+(Info) member: t  T equal: s = t MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  real: grp_car: |g| nat: pair: <a, b> bag-size: bag-size(bs) bag-only: only(bs) void: Void axiom: Ax natural_number: $n rev_implies: P  Q true: True fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) set: {x:A| B[x]}  le: A  B ge: i  j  less_than: a < b bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) false: False limited-type: LimitedType prop: bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] uimplies: b supposing a uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit es-latest-val: (X) in-eclass: e  X eclass-val: X(e) assert: b es-prior-val: (X)' bool: RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  rationals: eq_knd: a = b list: type List fpf-dom: x  dom(f) intensional-universe: IType es-E-interface: E(X) cand: A c B so_apply: x[s] guard: {T} l_member: (x  l) sq_type: SQType(T) cond-class: [X?Y]
Lemmas :  eclass-val_wf subtype_base_sq bool_subtype_base assert_elim assert_of_eq_int rev_implies_wf iff_wf intensional-universe_wf bag-size_wf bag_wf member_wf es-prior-val_wf bag-only_wf not_wf true_wf top_wf in-eclass_wf assert_wf bool_wf es-interface-top subtype_rel_wf bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert false_wf assert_witness eq_int_wf nat_wf ifthenelse_wf eclass_wf es-E_wf es-base-E_wf subtype_rel_self event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[T:Type]
            \mforall{}X:EClass(T).  \mforall{}e:E.
                (\muparrow{}e  \mmember{}\msubb{}  (X)\msupminus{}
                \mLeftarrow{}{}\mRightarrow{}  ((\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  ((X)\msupminus{}(e)  =  X(e)))  \mvee{}  (((\muparrow{}e  \mmember{}\msubb{}  (X)')  \mwedge{}  (\mneg{}\muparrow{}e  \mmember{}\msubb{}  X))  \mwedge{}  ((X)\msupminus{}(e)  =  (X)'(e))))


Date html generated: 2011_08_16-PM-05_08_08
Last ObjectModification: 2011_06_20-AM-01_11_25

Home Index