{ [Info,A:Type]. [X:EClass(A)].  (LProgrammable(A;X)  ') }

{ Proof }



Definitions occuring in Statement :  locally-programmable: LProgrammable(A;X) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] prop: member: t  T universe: Type
Definitions :  equal: s = t member: t  T isect: x:A. B[x] uall: [x:A]. B[x] universe: Type axiom: Ax eclass: EClass(A[eo; e]) locally-programmable: LProgrammable(A;X) prop: so_lambda: x y.t[x; y] all: x:A. B[x] function: x:A  B[x] lambda: x.A[x] event-ordering+: EO+(Info) es-E: E event_ordering: EO record+: record+ dep-isect: Error :dep-isect,  record-select: r.x ifthenelse: if b then t else f fi  eq_atom: x =a y token: "$token" es-base-E: es-base-E(es) top: Top apply: f a atom: Atom eq_atom: eq_atom$n(x;y) subtype_rel: A r B subtype: S  T bool: bag: bag(T) exists: x:A. B[x] product: x:A  B[x] implies: P  Q Id: Id dataflow: dataflow(A;B) limited-type: LimitedType es-loc: loc(e) last: last(L) data-stream: data-stream(P;L) map: map(f;as) es-info: info(e) es-le-before: loc(e) sq_type: SQType(T) guard: {T} atom: Atom$n corec: corec(T.F[T]) assert: b decide: case b of inl(x) =s[x] | inr(y) =t[y] set: {x:A| B[x]}  uimplies: b supposing a list: type List combination: Combination(n;T) listp: A List es-le: e loc e'  not: A false: False void: Void uiff: uiff(P;Q) and: P  Q less_than: a < b l_member: (x  l) strong-subtype: strong-subtype(A;B) intensional-universe: IType ge: i  j  le: A  B fpf: a:A fp-B[a] primrec: primrec(n;b;c) pair: <a, b> quotient: x,y:A//B[x; y] permutation: permutation(T;L1;L2) nat: es-E-interface: E(X) filter: filter(P;l) fpf-cap: f(x)?z true: True union: left + right b-union: A  B isect2: T1  T2 select: l[i] class-program: ClassProgram(T) ma-state: State(ds) deq: EqDecider(T) fpf-sub: f  g stream: stream(A) tuple-type: tuple-type(L) fset: FSet{T} record: record(x.T[x]) iff: P  Q or: P  Q rev_implies: P  Q tag-by: zT sqequal: s ~ t valueall-type: valueall-type(T) es-interface-prior-vals: X(e) null: null(as) bfalse: ff equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y])
Lemmas :  refl_wf sym_wf trans_wf equiv_rel_wf quotient_wf bfalse_wf bool_subtype_base subtype_base_sq bool_wf es-le-before-not-null es-le_wf es-le-before_wf2 null-map top_wf null-data-stream dataflow_subtype l_member_wf list-subtype permutation_wf subtype_rel_wf intensional-universe_wf pos_length2 false_wf not_wf assert_wf es-info_wf map_wf es-le-before_wf data-stream_wf last_wf eclass_wf dataflow_wf Id_wf es-loc_wf es-base-E_wf subtype_rel_self event-ordering+_inc member_wf bag_wf es-E_wf event-ordering+_wf

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].    (LProgrammable(A;X)  \mmember{}  \mBbbP{}')


Date html generated: 2011_08_16-PM-06_14_34
Last ObjectModification: 2011_06_13-PM-01_12_28

Home Index