Nuprl Lemma : num-antecedents-property

[Info:Type]. [es:EO+(Info)]. [Sys:EClass(Top)]. [f:sys-antecedent(es;Sys)]. [e:E(Sys)].
  {((f (f^#f(e) e)) = (f^#f(e) e))  ([i:#f(e)]. (((f (f^i e)) = (f^i e))))}


Proof not projected




Definitions occuring in Statement :  num-antecedents: #f(e) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) int_seg: {i..j} uall: [x:A]. B[x] top: Top guard: {T} not: A and: P  Q apply: f a natural_number: $n universe: Type equal: s = t fun_exp: f^n
Definitions :  bfalse: ff btrue: tt ifthenelse: if b then t else f fi  le: A  B ge: i  j  so_lambda: x y.t[x; y] false: False not: A and: P  Q uall: [x:A]. B[x] ycomb: Y prop: implies: P  Q nat: member: t  T all: x:A. B[x] num-antecedents: #f(e) guard: {T} es-E-interface: E(X) so_lambda: x.t[x] sys-antecedent: sys-antecedent(es;Sys) label: ...$L... t eq_int: (i = j) primrec: primrec(n;b;c) fun_exp: f^n uiff: uiff(P;Q) uimplies: b supposing a unit: Unit bool: so_apply: x[s1;s2] lelt: i  j < k exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) int_seg: {i..j} cand: A c B so_apply: x[s] sq_type: SQType(T) or: P  Q decidable: Dec(P) it: subtype: S  T
Lemmas :  not_functionality_wrt_uiff assert_of_bnot eqff_to_assert assert-es-eq-E-2 eqtt_to_assert uiff_transitivity ge_wf nat_properties event-ordering+_wf top_wf eclass_wf sys-antecedent_wf num-antecedents_wf int_seg_wf fun_exp_wf not_wf bnot_wf equal_wf bool_wf in-eclass_wf assert_wf es-E_wf es-eq-E_wf es-causl_wf less_than_wf es-E-interface_wf le_wf nat_wf event-ordering+_inc es-causl-swellfnd es-causle_wf all_wf int_subtype_base subtype_base_sq decidable__equal_int

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[Sys:EClass(Top)].  \mforall{}[f:sys-antecedent(es;Sys)].  \mforall{}[e:E(Sys)].
    \{((f  (f\^{}\#f(e)  e))  =  (f\^{}\#f(e)  e))  \mwedge{}  (\mforall{}[i:\mBbbN{}\#f(e)].  (\mneg{}((f  (f\^{}i  e))  =  (f\^{}i  e))))\}


Date html generated: 2012_01_23-PM-12_23_44
Last ObjectModification: 2011_12_13-AM-10_35_06

Home Index