{ [s:simple-consensus-state()  simple-consensus-msg()]
    (snd((nxt_inning() s)) ~ (fst(outl(outl(inning_val() s)))) + 1) supposing 
       ((isl(outl(inning_val() s))) and 
       (isl(inning_val() s))) }

{ Proof }



Definitions occuring in Statement :  inning_val: inning_val() nxt_inning: nxt_inning() simple-consensus-msg: simple-consensus-msg() simple-consensus-state: simple-consensus-state() outl: outl(x) isl: isl(x) assert: b uimplies: b supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) apply: f a product: x:A  B[x] add: n + m natural_number: $n sqequal: s ~ t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a assert: b isl: isl(x) inning_val: inning_val() outl: outl(x) pi2: snd(t) nxt_inning: nxt_inning() pi1: fst(t) member: t  T ifthenelse: if b then t else f fi  btrue: tt bfalse: ff prop: all: x:A. B[x] implies: P  Q so_lambda: x.t[x] simple-consensus-state: simple-consensus-state() simple-consensus-msg: simple-consensus-msg() nat: false: False bool: unit: Unit iff: P  Q and: P  Q so_apply: x[s] it:
Lemmas :  true_wf le_int_wf bool_wf iff_weakening_uiff le_wf uiff_transitivity assert_wf eqtt_to_assert assert_of_le_int lt_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int bl-exists_wf eq_int_wf l_member_wf iff_transitivity l_exists_wf assert-bl-exists not_wf assert_of_bnot not_functionality_wrt_iff false_wf isl_wf nat_wf outl_wf unit_wf inning_val_wf simple-consensus-state_wf simple-consensus-msg_wf

\mforall{}[s:simple-consensus-state()  \mtimes{}  simple-consensus-msg()]
    (snd((nxt\_inning()  s))  \msim{}  (fst(outl(outl(inning\_val()  s))))  +  1)  supposing 
          ((\muparrow{}isl(outl(inning\_val()  s)))  and 
          (\muparrow{}isl(inning\_val()  s)))


Date html generated: 2011_08_17-PM-06_32_59
Last ObjectModification: 2011_06_18-AM-11_56_10

Home Index