Nuprl Lemma : primed-class-opt-es-sv0

[Info,B:Type]. [es:EO+(Info)]. [X:EClass(B)]. [init:Id  bag(B)]. [e:E].
  ((bag-size(init loc(e))  1)
   (e':E. ((e' <loc e)  (bag-size(X es e')  1)))
   (bag-size(Prior(X)?init es e)  1))


Proof not projected




Definitions occuring in Statement :  primed-class-opt: Prior(X)?b eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-loc: loc(e) es-E: E Id: Id uall: [x:A]. B[x] le: A  B all: x:A. B[x] implies: P  Q apply: f a function: x:A  B[x] natural_number: $n universe: Type bag-size: bag-size(bs) bag: bag(T)
Definitions :  so_lambda: x y.t[x; y] cand: A c B squash: T true: True ifthenelse: if b then t else f fi  bfalse: ff btrue: tt so_lambda: x.t[x] sq_exists: x:{A| B[x]} outl: outl(x) isl: isl(x) prop: suptype: suptype(S; T) subtype: S  T do-apply: do-apply(f;x) or: P  Q and: P  Q can-apply: can-apply(f;x) assert: b uimplies: b supposing a member: t  T primed-class-opt: Prior(X)?b implies: P  Q all: x:A. B[x] eclass: EClass(A[eo; e]) so_apply: x[s1;s2] sq_stable: SqStable(P) false: False so_apply: x[s] nat: uall: [x:A]. B[x]
Lemmas :  event-ordering+_wf eclass_wf bag_wf Id_wf primed-class-opt_wf es-loc_wf equal_wf false_wf isect_wf outl_wf isl_wf es-E_wf es-pred_wf event-ordering+_inc es-first_wf true_wf decidable__le le_wf sq_stable_from_decidable not_wf all_wf assert_wf and_wf sq_exists_wf or_wf es-local-pred_wf es-locl_wf es-local-pred-cases bool_wf nat_wf bag-size_wf lt_int_wf

\mforall{}[Info,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[e:E].
    ((bag-size(init  loc(e))  \mleq{}  1)
    {}\mRightarrow{}  (\mforall{}e':E.  ((e'  <loc  e)  {}\mRightarrow{}  (bag-size(X  es  e')  \mleq{}  1)))
    {}\mRightarrow{}  (bag-size(Prior(X)?init  es  e)  \mleq{}  1))


Date html generated: 2012_02_20-PM-02_52_35
Last ObjectModification: 2012_02_07-AM-11_56_59

Home Index