{ [Info:Type]
    es:EO+(Info). e:E. P:{e':E| (e' <loc e)}   .
      (first(e))
       ((((P pred(e)))  (do-apply(last(P);e) = pred(e)))
         (((P pred(e)))
           (can-apply(last(P);pred(e)))
           (do-apply(last(P);e) = do-apply(last(P);pred(e))))) 
      supposing can-apply(last(P);e) }

{ Proof }



Definitions occuring in Statement :  es-local-pred: last(P) event-ordering+: EO+(Info) es-locl: (e <loc e') es-pred: pred(e) es-first: first(e) es-E: E assert: b bool: uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] not: A or: P  Q and: P  Q set: {x:A| B[x]}  apply: f a function: x:A  B[x] universe: Type equal: s = t do-apply: do-apply(f;x) can-apply: can-apply(f;x)
Definitions :  intensional-universe: IType unit: Unit pair: <a, b> record: record(x.T[x]) squash: T es-loc: loc(e) atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" cand: A c B guard: {T} eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B Id: Id es-causl: (e < e') true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  prop: subtype: S  T sqequal: s ~ t do-apply: do-apply(f;x) es-pred: pred(e) apply: f a es-first: first(e) es-local-pred: last(P) can-apply: can-apply(f;x) member: t  T void: Void false: False implies: P  Q universe: Type uall: [x:A]. B[x] so_lambda: x.t[x] all: x:A. B[x] uimplies: b supposing a isect: x:A. B[x] or: P  Q union: left + right and: P  Q product: x:A  B[x] equal: s = t es-E: E event-ordering+: EO+(Info) event_ordering: EO not: A assert: b function: x:A  B[x] bool: set: {x:A| B[x]}  es-locl: (e <loc e') Try: Error :Try,  D: Error :D,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  Complete: Error :Complete,  THENM: Error :THENM,  ExRepD: Error :ExRepD,  inr: inr x  bfalse: ff inl: inl x  btrue: tt sq_exists: x:{A| B[x]} Unfold: Error :Unfold,  suptype: suptype(S; T) axiom: Ax natural_number: $n limited-type: LimitedType iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q bnot: b int: lambda: x.A[x] es-le: e loc e'  so_apply: x[s] l_member: (x  l) list: type List fpf-cap: f(x)?z es-E-interface: E(X) outl: outl(x) Unfolds: Error :Unfolds,  isl: isl(x)
Lemmas :  isl_wf subtype_rel_function subtype_rel_set subtype_rel_sets es-locl_transitivity2 es-le_weakening bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity iff_weakening_uiff eqtt_to_assert can-apply_wf top_wf do-apply_wf es-local-pred_wf2 btrue_wf bfalse_wf es-locl_wf bool_wf assert_wf not_wf es-E_wf event-ordering+_inc event-ordering+_wf uall_wf es-local-pred-cases-sq assert_witness es-pred_wf es-causl_wf Id_wf member_wf subtype_rel_wf es-base-E_wf subtype_rel_self event_ordering_wf true_wf squash_wf es-loc_wf false_wf unit_wf intensional-universe_wf es-pred-locl ifthenelse_wf es-local-pred_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}e:E.  \mforall{}P:\{e':E|  (e'  <loc  e)\}    {}\mrightarrow{}  \mBbbB{}.
        (\mneg{}\muparrow{}first(e))
        \mwedge{}  (((\muparrow{}(P  pred(e)))  \mwedge{}  (do-apply(last(P);e)  =  pred(e)))
            \mvee{}  ((\mneg{}\muparrow{}(P  pred(e)))
                \mwedge{}  (\muparrow{}can-apply(last(P);pred(e)))
                \mwedge{}  (do-apply(last(P);e)  =  do-apply(last(P);pred(e))))) 
        supposing  \muparrow{}can-apply(last(P);e)


Date html generated: 2011_08_16-PM-04_42_49
Last ObjectModification: 2011_06_20-AM-01_02_39

Home Index