Nuprl Lemma : prior-classrel

[T,Info:Type]. [X:EClass(T)]. [es:EO+(Info)]. [e:E]. [v:T].
  uiff(v  Prior(X)(e);e':E. (((last(e'.0 <z bag-size(X es e')) e) = (inl e' ))  v  X(e')))


Proof not projected




Definitions occuring in Statement :  primed-class: Prior(X) es-local-pred: last(P) classrel: v  X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E lt_int: i <z j uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top exists: x:A. B[x] squash: T and: P  Q apply: f a lambda: x.A[x] inl: inl x  union: left + right natural_number: $n universe: Type equal: s = t bag-size: bag-size(bs)
Definitions :  so_lambda: x y.t[x; y] implies: P  Q sq_exists: x:{A| B[x]} or: P  Q cand: A c B so_lambda: x.t[x] subtype: S  T all: x:A. B[x] bag-member: x  bs prop: true: True member: t  T uimplies: b supposing a top: Top and: P  Q exists: x:A. B[x] squash: T classrel: v  X(e) uiff: uiff(P;Q) eclass: EClass(A[eo; e]) primed-class: Prior(X) so_apply: x[s1;s2] nat: so_apply: x[s] uall: [x:A]. B[x] false: False sq_stable: SqStable(P)
Lemmas :  equal_wf and_wf eclass_wf event-ordering+_wf or_wf sq_exists_wf not_wf all_wf assert_wf es-locl_wf nat_wf bag-size_wf lt_int_wf es-local-pred_wf top_wf event-ordering+_inc es-E_wf exists_wf squash_wf primed-class_wf classrel_wf bag-member_wf empty-bag_wf bag-member-empty sq_stable__bag-member

\mforall{}[T,Info:Type].  \mforall{}[X:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:T].
    uiff(v  \mmember{}  Prior(X)(e);\mdownarrow{}\mexists{}e':E.  (((last(\mlambda{}e'.0  <z  bag-size(X  es  e'))  e)  =  (inl  e'  ))  \mwedge{}  v  \mmember{}  X(e')))


Date html generated: 2012_01_23-PM-01_11_59
Last ObjectModification: 2011_12_05-PM-12_36_44

Home Index