{ [Info,T:Type]. [es:EO+(Info)]. [X:EClass(T)]. [e,p:E].
    (((X)' es e) = ((X) es p)) supposing 
       ((e'':E. ((e'' <loc e)  (p <loc e'')  (e''  X))) and 
       (p <loc e)) }

{ Proof }



Definitions occuring in Statement :  es-latest-val: (X) es-prior-val: (X)' in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] not: A implies: P  Q apply: f a universe: Type equal: s = t bag: bag(T)
Definitions :  axiom: Ax es-latest-val: (X) es-prior-val: (X)' bag: bag(T) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) apply: f a infix_ap: x f y es-causl: (e < e') set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B top: Top in-eclass: e  X assert: b not: A implies: P  Q prop: es-locl: (e <loc e') uimplies: b supposing a subtype: S  T event_ordering: EO es-E: E lambda: x.A[x] isect: x:A. B[x] event-ordering+: EO+(Info) universe: Type equal: s = t member: t  T so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) all: x:A. B[x] function: x:A  B[x] uall: [x:A]. B[x] record: record(x.T[x]) eclass-val: X(e) single-bag: {x} btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q es-pred: pred(e) bnot: b unit: Unit union: left + right fpf-dom: x  dom(f) es-loc: loc(e) atom: Atom es-base-E: es-base-E(es) token: "$token" guard: {T} bfalse: ff sq_type: SQType(T) es-first: first(e) null: null(as) Id: Id bool: sqequal: s ~ t pair: <a, b> true: True squash: T limited-type: LimitedType real: grp_car: |g| minus: -n add: n + m subtract: n - m void: Void false: False natural_number: $n int: nat: exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) or: P  Q iff: P  Q es-E-interface: E(X) so_apply: x[s1;s2] so_lambda: x.t[x] so_apply: x[s] l_member: (x  l) es-le: e loc e'  es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p)
Lemmas :  es-locl_transitivity2 es-le_weakening es-causl_weakening es-pred-causl set_subtype_base squash_wf true_wf es-interface-subtype_rel2 top_wf Id_wf es-pred-locl es-locl-iff bag_wf es-causl-swellfnd nat_wf nat_properties ge_wf le_wf es-causl_wf es-prior-val_wf es-latest-val_wf prior-val-pred false_wf bool_wf subtype_base_sq bool_subtype_base es-locl-first es-base-E_wf subtype_rel_self ifthenelse_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot es-pred_wf eclass-val_wf single-bag_wf bnot_wf not_assert_elim event-ordering+_wf event-ordering+_inc es-E_wf es-locl_wf not_wf assert_wf in-eclass_wf member_wf eclass_wf subtype_rel_wf es-interface-top

\mforall{}[Info,T:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].  \mforall{}[e,p:E].
    (((X)'  es  e)  =  ((X)\msupminus{}  es  p))  supposing 
          ((\mforall{}e'':E.  ((e''  <loc  e)  {}\mRightarrow{}  (p  <loc  e'')  {}\mRightarrow{}  (\mneg{}\muparrow{}e''  \mmember{}\msubb{}  X)))  and 
          (p  <loc  e))


Date html generated: 2011_08_16-PM-05_08_54
Last ObjectModification: 2011_06_20-AM-01_11_56

Home Index