Nuprl Lemma : MultiTree-definition

[T,A:Type]. ∀[R:A ─→ MultiTree(T) ─→ ℙ].
  ((∀labels:{L:Atom List| 0 < ||L||} . ∀children:{a:Atom| (a ∈ labels)}  ─→ MultiTree(T).
      ((∀u:{a:Atom| (a ∈ labels)} {x:A| R[x;children u]}  {x:A| R[x;MTree_Node(labels;children)]} ))
   (∀val:T. {x:A| R[x;MTree_Leaf(val)]} )
   {∀v:MultiTree(T). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  MTree_Leaf: MTree_Leaf(val) MTree_Node: MTree_Node(labels;children) MultiTree: MultiTree(T) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] natural_number: $n atom: Atom universe: Type
Lemmas :  MultiTree-induction set_wf MultiTree_wf all_wf MTree_Leaf_wf list_wf less_than_wf length_wf l_member_wf MTree_Node_wf
\mforall{}[T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  MultiTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}labels:\{L:Atom  List|  0  <  ||L||\}  .  \mforall{}children:\{a:Atom|  (a  \mmember{}  labels)\}    {}\mrightarrow{}  MultiTree(T).
            ((\mforall{}u:\{a:Atom|  (a  \mmember{}  labels)\}  .  \{x:A|  R[x;children  u]\}  )  {}\mRightarrow{}  \{x:A|  R[x;MTree\_Node(labels;children\000C)]\}  ))
    {}\mRightarrow{}  (\mforall{}val:T.  \{x:A|  R[x;MTree\_Leaf(val)]\}  )
    {}\mRightarrow{}  \{\mforall{}v:MultiTree(T).  \{x:A|  R[x;v]\}  \})



Date html generated: 2015_07_17-AM-07_46_15
Last ObjectModification: 2015_01_27-AM-09_45_13

Home Index