Nuprl Lemma : MultiTree_ind_wf
∀[T,A:Type]. ∀[R:A ─→ MultiTree(T) ─→ ℙ]. ∀[v:MultiTree(T)]. ∀[Node:labels:{L:Atom List| 0 < ||L||} 
                                                                    ─→ children:({a:Atom| (a ∈ labels)}  ─→ MultiTree(T)\000C)
                                                                    ─→ (u:{a:Atom| (a ∈ labels)}  ─→ {x:A| R[x;children \000Cu]} )
                                                                    ─→ {x:A| R[x;MTree_Node(labels;children)]} ].
∀[Leaf:val:T ─→ {x:A| R[x;MTree_Leaf(val)]} ].
  (MultiTree_ind(v;
                 MTree_Node(labels,children)
⇒ rec1.Node[labels;children;rec1];
                 MTree_Leaf(val)
⇒ Leaf[val])  ∈ {x:A| R[x;v]} )
Proof
Definitions occuring in Statement : 
MultiTree_ind: MultiTree_ind, 
MTree_Leaf: MTree_Leaf(val)
, 
MTree_Node: MTree_Node(labels;children)
, 
MultiTree: MultiTree(T)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
atom: Atom
, 
universe: Type
Lemmas : 
top_wf, 
has-value_wf_base, 
lifting-strict-atom_eq, 
base_wf, 
MultiTree_wf, 
list_wf, 
less_than_wf, 
length_wf, 
l_member_wf, 
MTree_Node_wf, 
MTree_Leaf_wf, 
all_wf, 
set_wf, 
subtype_rel-equal
\mforall{}[T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  MultiTree(T)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:MultiTree(T)].
\mforall{}[Node:labels:\{L:Atom  List|  0  <  ||L||\} 
              {}\mrightarrow{}  children:(\{a:Atom|  (a  \mmember{}  labels)\}    {}\mrightarrow{}  MultiTree(T))
              {}\mrightarrow{}  (u:\{a:Atom|  (a  \mmember{}  labels)\}    {}\mrightarrow{}  \{x:A|  R[x;children  u]\}  )
              {}\mrightarrow{}  \{x:A|  R[x;MTree\_Node(labels;children)]\}  ].  \mforall{}[Leaf:val:T  {}\mrightarrow{}  \{x:A|  R[x;MTree\_Leaf(val)]\}  ].
    (MultiTree\_ind(v;
                                  MTree\_Node(labels,children){}\mRightarrow{}  rec1.Node[labels;children;rec1];
                                  MTree\_Leaf(val){}\mRightarrow{}  Leaf[val])    \mmember{}  \{x:A|  R[x;v]\}  )
Date html generated:
2015_07_17-AM-07_46_19
Last ObjectModification:
2015_01_29-PM-04_39_16
Home
Index