Nuprl Lemma : hdf-rec-bind_wf
∀[A,B,C:Type]. ∀[X:C ─→ hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;C)].
(hdf-rec-bind(X;Y) ∈ C ─→ hdataflow(A;B)) supposing (valueall-type(B) and valueall-type(C))
Proof
Definitions occuring in Statement :
hdf-rec-bind: hdf-rec-bind(X;Y)
,
hdataflow: hdataflow(A;B)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
Lemmas :
mk-hdf_wf,
bag_wf,
hdataflow_wf,
single-bag_wf,
bag-null_wf,
bool_wf,
eqtt_to_assert,
assert-bag-null,
rec-bind-nxt_wf,
valueall-type_wf
\mforall{}[A,B,C:Type]. \mforall{}[X:C {}\mrightarrow{} hdataflow(A;B)]. \mforall{}[Y:C {}\mrightarrow{} hdataflow(A;C)].
(hdf-rec-bind(X;Y) \mmember{} C {}\mrightarrow{} hdataflow(A;B)) supposing (valueall-type(B) and valueall-type(C))
Date html generated:
2015_07_17-AM-08_08_03
Last ObjectModification:
2015_01_27-PM-00_06_09
Home
Index