Nuprl Lemma : hdf-rec-bind_wf

[A,B,C:Type]. ∀[X:C ─→ hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;C)].
  (hdf-rec-bind(X;Y) ∈ C ─→ hdataflow(A;B)) supposing (valueall-type(B) and valueall-type(C))


Proof




Definitions occuring in Statement :  hdf-rec-bind: hdf-rec-bind(X;Y) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  mk-hdf_wf bag_wf hdataflow_wf single-bag_wf bag-null_wf bool_wf eqtt_to_assert assert-bag-null rec-bind-nxt_wf valueall-type_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:C  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;C)].
    (hdf-rec-bind(X;Y)  \mmember{}  C  {}\mrightarrow{}  hdataflow(A;B))  supposing  (valueall-type(B)  and  valueall-type(C))



Date html generated: 2015_07_17-AM-08_08_03
Last ObjectModification: 2015_01_27-PM-00_06_09

Home Index