Nuprl Lemma : rec-bind-nxt_wf

[A,B,C:Type]. ∀[X:C ─→ hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;C)]. ∀[p:bag(hdataflow(A;B)) × bag(hdataflow(A;C))].
[a:A].
  (rec-bind-nxt(X;Y;p;a) ∈ bag(hdataflow(A;B)) × bag(hdataflow(A;C)) × bag(B)) supposing 
     (valueall-type(B) and 
     valueall-type(C))


Proof




Definitions occuring in Statement :  rec-bind-nxt: rec-bind-nxt(X;Y;p;a) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] universe: Type bag: bag(T)
Lemmas :  valueall-type-has-valueall bag-valueall-type product-valueall-type hdataflow-valueall-type evalall-reduce bag-map_wf bag-append_wf bag-combine_wf valueall-type_wf bag_wf hdataflow_wf bag-mapfilter_wf hdf-running_wf assert_wf bag-filter_wf subtype_rel_bag
\mforall{}[A,B,C:Type].  \mforall{}[X:C  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[p:bag(hdataflow(A;B))  \mtimes{}  bag(hdataflow(A;C))].  \mforall{}[a:A].
    (rec-bind-nxt(X;Y;p;a)  \mmember{}  bag(hdataflow(A;B))  \mtimes{}  bag(hdataflow(A;C))  \mtimes{}  bag(B))  supposing 
          (valueall-type(B)  and 
          valueall-type(C))



Date html generated: 2015_07_17-AM-08_08_00
Last ObjectModification: 2015_01_27-PM-00_06_23

Home Index