Nuprl Lemma : rec-bind-nxt_wf
∀[A,B,C:Type]. ∀[X:C ─→ hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;C)]. ∀[p:bag(hdataflow(A;B)) × bag(hdataflow(A;C))].
∀[a:A].
  (rec-bind-nxt(X;Y;p;a) ∈ bag(hdataflow(A;B)) × bag(hdataflow(A;C)) × bag(B)) supposing 
     (valueall-type(B) and 
     valueall-type(C))
Proof
Definitions occuring in Statement : 
rec-bind-nxt: rec-bind-nxt(X;Y;p;a)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
valueall-type-has-valueall, 
bag-valueall-type, 
product-valueall-type, 
hdataflow-valueall-type, 
evalall-reduce, 
bag-map_wf, 
bag-append_wf, 
bag-combine_wf, 
valueall-type_wf, 
bag_wf, 
hdataflow_wf, 
bag-mapfilter_wf, 
hdf-running_wf, 
assert_wf, 
bag-filter_wf, 
subtype_rel_bag
\mforall{}[A,B,C:Type].  \mforall{}[X:C  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[p:bag(hdataflow(A;B))  \mtimes{}  bag(hdataflow(A;C))].  \mforall{}[a:A].
    (rec-bind-nxt(X;Y;p;a)  \mmember{}  bag(hdataflow(A;B))  \mtimes{}  bag(hdataflow(A;C))  \mtimes{}  bag(B))  supposing 
          (valueall-type(B)  and 
          valueall-type(C))
Date html generated:
2015_07_17-AM-08_08_00
Last ObjectModification:
2015_01_27-PM-00_06_23
Home
Index