Nuprl Lemma : bag-mapfilter_wf
∀[T,A:Type].  ∀P:T ⟶ 𝔹. ∀f:{x:T| ↑(P x)}  ⟶ A. ∀bs:bag(T).  (bag-mapfilter(f;P;bs) ∈ bag(A))
Proof
Definitions occuring in Statement : 
bag-mapfilter: bag-mapfilter(f;P;bs)
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
bag-mapfilter: bag-mapfilter(f;P;bs)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
bag-map_wf, 
assert_wf, 
bag-filter_wf, 
bag_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[T,A:Type].    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  A.  \mforall{}bs:bag(T).    (bag-mapfilter(f;P;bs)  \mmember{}  bag(A))
Date html generated:
2016_05_15-PM-02_23_46
Last ObjectModification:
2015_12_27-AM-09_53_56
Theory : bags
Home
Index