Nuprl Lemma : randomness

p:FinProbSpace. ∀a,b:Atom2. ∀C:p-open(p).
  (measure(C)  (a#C:p-open(p) ∨ b#C:p-open(p))  (∃n:ℕ((C <n, random(p;a;b)>1 ∈ ℤ)))


Proof




Definitions occuring in Statement :  random: random(p;a;b) p-open-measure-one: measure(C) 1 p-open: p-open(p) finite-prob-space: FinProbSpace nat: free-from-atom: a#x:T atom: Atom$n all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q apply: a pair: <a, b> natural_number: $n int: equal: t ∈ T
Lemmas :  find-random_wf nat_wf subtype_rel_dep_function p-outcome_wf int_seg_wf int_seg_subtype-nat false_wf subtype_rel_self le_wf equal-wf-T-base random_wf or_wf free-from-atom_wf2 p-open_wf p-open-measure-one_wf finite-prob-space_wf set_wf sq_stable__le equal_wf
\mforall{}p:FinProbSpace.  \mforall{}a,b:Atom2.  \mforall{}C:p-open(p).
    (measure(C)  =  1  {}\mRightarrow{}  (a\#C:p-open(p)  \mvee{}  b\#C:p-open(p))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  ((C  <n,  random(p;a;b)>)  =  1)))



Date html generated: 2015_07_17-AM-08_04_32
Last ObjectModification: 2015_01_27-AM-11_24_45

Home Index