Nuprl Lemma : rv-partial-sum-unroll
∀[m:ℕ+]. ∀[X:Top].  (rv-partial-sum(m;i.X[i]) ~ rv-partial-sum(m - 1;i.X[i]) + X[m - 1])
Proof
Definitions occuring in Statement : 
rv-partial-sum: rv-partial-sum(n;i.X[i])
, 
rv-add: X + Y
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
subtract: n - m
, 
natural_number: $n
, 
sqequal: s ~ t
Lemmas : 
top_wf, 
nat_plus_wf, 
lt_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[X:Top].    (rv-partial-sum(m;i.X[i])  \msim{}  rv-partial-sum(m  -  1;i.X[i])  +  X[m  -  1])
Date html generated:
2015_07_17-AM-08_02_24
Last ObjectModification:
2015_01_27-AM-11_21_46
Home
Index