Nuprl Lemma : rv-partial-sum-unroll

[m:ℕ+]. ∀[X:Top].  (rv-partial-sum(m;i.X[i]) rv-partial-sum(m 1;i.X[i]) X[m 1])


Proof




Definitions occuring in Statement :  rv-partial-sum: rv-partial-sum(n;i.X[i]) rv-add: Y nat_plus: + uall: [x:A]. B[x] top: Top so_apply: x[s] subtract: m natural_number: $n sqequal: t
Lemmas :  top_wf nat_plus_wf lt_int_wf bool_wf equal-wf-T-base assert_wf less_than_wf le_int_wf le_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[X:Top].    (rv-partial-sum(m;i.X[i])  \msim{}  rv-partial-sum(m  -  1;i.X[i])  +  X[m  -  1])



Date html generated: 2015_07_17-AM-08_02_24
Last ObjectModification: 2015_01_27-AM-11_21_46

Home Index