Nuprl Lemma : ws-lower-bound
∀[p:FinProbSpace]. ∀[F:Outcome ─→ ℚ]. ∀[q:ℚ].  q ≤ weighted-sum(p;F) supposing ∀x:Outcome. (q ≤ (F x))
Proof
Definitions occuring in Statement : 
weighted-sum: weighted-sum(p;F)
, 
p-outcome: Outcome
, 
finite-prob-space: FinProbSpace
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
rationals: ℚ
Lemmas : 
ws-monotone, 
sq_stable_from_decidable, 
Error :qle_wf, 
Error :decidable__qle, 
l_all_iff, 
l_member_wf, 
Error :qle_witness, 
weighted-sum_wf2, 
all_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
set_wf, 
list_wf, 
equal-wf-T-base, 
Error :qsum_wf, 
select_wf, 
sq_stable__le, 
l_all_wf2, 
int-subtype-rationals, 
squash_wf, 
true_wf, 
ws-constant, 
p-outcome_wf
\mforall{}[p:FinProbSpace].  \mforall{}[F:Outcome  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[q:\mBbbQ{}].
    q  \mleq{}  weighted-sum(p;F)  supposing  \mforall{}x:Outcome.  (q  \mleq{}  (F  x))
Date html generated:
2015_07_17-AM-07_58_29
Last ObjectModification:
2015_01_27-AM-11_24_13
Home
Index