Nuprl Lemma : ws-lower-bound

[p:FinProbSpace]. ∀[F:Outcome ─→ ℚ]. ∀[q:ℚ].  q ≤ weighted-sum(p;F) supposing ∀x:Outcome. (q ≤ (F x))


Proof




Definitions occuring in Statement :  weighted-sum: weighted-sum(p;F) p-outcome: Outcome finite-prob-space: FinProbSpace uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ─→ B[x] rationals:
Lemmas :  ws-monotone sq_stable_from_decidable Error :qle_wf,  Error :decidable__qle,  l_all_iff l_member_wf Error :qle_witness,  weighted-sum_wf2 all_wf int_seg_wf length_wf rationals_wf set_wf list_wf equal-wf-T-base Error :qsum_wf,  select_wf sq_stable__le l_all_wf2 int-subtype-rationals squash_wf true_wf ws-constant p-outcome_wf
\mforall{}[p:FinProbSpace].  \mforall{}[F:Outcome  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[q:\mBbbQ{}].
    q  \mleq{}  weighted-sum(p;F)  supposing  \mforall{}x:Outcome.  (q  \mleq{}  (F  x))



Date html generated: 2015_07_17-AM-07_58_29
Last ObjectModification: 2015_01_27-AM-11_24_13

Home Index