Nuprl Lemma : union-Leibniz-type

A,B:Type.  (Leibniz-type{i:l}(A)  Leibniz-type{i:l}(B)  Leibniz-type{i:l}(A B))


Proof




Definitions occuring in Statement :  Leibniz-type: Leibniz-type{i:l}(T) all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q Leibniz-type: Leibniz-type{i:l}(T) exists: x:A. B[x] and: P ∧ Q member: t ∈ T or: P ∨ Q true: True subtype_rel: A ⊆B iff: ⇐⇒ Q not: ¬A false: False rev_implies:  Q isl: isl(x) prop: uall: [x:A]. B[x] guard: {T}
Lemmas referenced :  true_wf istype-true istype-void btrue_wf bfalse_wf btrue_neq_bfalse subtype_rel_self Leibniz-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt lambdaEquality_alt cut hypothesisEquality equalityTransitivity hypothesis equalitySymmetry inhabitedIsType unionElimination sqequalRule applyEquality introduction extract_by_obid equalityIstype dependent_functionElimination independent_functionElimination unionIsType universeIsType independent_pairFormation inlFormation_alt natural_numberEquality inrFormation_alt because_Cache applyLambdaEquality promote_hyp voidElimination inlEquality_alt functionIsType dependent_set_memberEquality_alt productIsType setElimination rename inrEquality_alt instantiate isectElimination cumulativity universeEquality

Latex:
\mforall{}A,B:Type.    (Leibniz-type\{i:l\}(A)  {}\mRightarrow{}  Leibniz-type\{i:l\}(B)  {}\mRightarrow{}  Leibniz-type\{i:l\}(A  +  B))



Date html generated: 2019_10_31-AM-07_25_59
Last ObjectModification: 2019_09_19-PM-06_50_43

Theory : constructive!algebra


Home Index