Nuprl Lemma : WtoSet-order-preserving

[A:Type]. ∀[B:A ⟶ Type].
  ∀x,y:W(A;a.B[a]). ∀b:𝔹.  ((x Wcmp(A;a.B[a];b) y)  (WtoSet(a.B[a];x) Wcmp(Type;a.a;b) WtoSet(a.B[a];y)))


Proof




Definitions occuring in Statement :  WtoSet: WtoSet(a.B[a];x) Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) bool: 𝔹 uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: infix_ap: y subtype_rel: A ⊆B Set: Set{i:l} all: x:A. B[x] WtoSet: WtoSet(a.B[a];x) Wsup: Wsup(a;b) Wcmp: Wcmp(A;a.B[a];leq) mk-set: f"(T) bool: 𝔹 ifthenelse: if then else fi  exists: x:A. B[x]
Lemmas referenced :  W-induction all_wf W_wf bool_wf Wcmp_wf WtoSet_wf subtype_rel_self Wsup_wf btrue_wf mk-set_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality universeEquality because_Cache independent_functionElimination lambdaFormation unionElimination dependent_functionElimination productElimination dependent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}x,y:W(A;a.B[a]).  \mforall{}b:\mBbbB{}.
        ((x  Wcmp(A;a.B[a];b)  y)  {}\mRightarrow{}  (WtoSet(a.B[a];x)  Wcmp(Type;a.a;b)  WtoSet(a.B[a];y)))



Date html generated: 2018_05_22-PM-09_52_07
Last ObjectModification: 2018_05_16-PM-01_31_46

Theory : constructive!set!theory


Home Index