Nuprl Lemma : bounded-relation_wf

[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. (Bounded(x,a.R[x;a]) ∈ ℙ')


Proof




Definitions occuring in Statement :  bounded-relation: Bounded(x,a.R[x; a]) Set: Set{i:l} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  rev_implies:  Q exists: x:A. B[x] iff: ⇐⇒ Q all: x:A. B[x] so_apply: x[s] so_apply: x[s1;s2] implies:  Q so_lambda: λ2x.t[x] and: P ∧ Q prop: bounded-relation: Bounded(x,a.R[x; a]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  setimage_wf setmem_wf iff_wf exists_wf seteq_wf Set_wf all_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesisEquality cumulativity functionEquality lambdaEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  (Bounded(x,a.R[x;a])  \mmember{}  \mBbbP{}')



Date html generated: 2018_05_29-PM-01_54_16
Last ObjectModification: 2018_05_29-AM-11_28_45

Theory : constructive!set!theory


Home Index