Nuprl Lemma : bounded-relation_wf
∀[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. (Bounded(x,a.R[x;a]) ∈ ℙ')
Proof
Definitions occuring in Statement : 
bounded-relation: Bounded(x,a.R[x; a]), 
Set: Set{i:l}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
prop: ℙ, 
bounded-relation: Bounded(x,a.R[x; a]), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
setimage_wf, 
setmem_wf, 
iff_wf, 
exists_wf, 
seteq_wf, 
Set_wf, 
all_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  (Bounded(x,a.R[x;a])  \mmember{}  \mBbbP{}')
 Date html generated: 
2018_05_29-PM-01_54_16
 Last ObjectModification: 
2018_05_29-AM-11_28_45
Theory : constructive!set!theory
Home
Index