Nuprl Lemma : coSet-bisimulation_wf
∀[R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ']. (coSet-bisimulation{i:l}(x,y.R[x;y]) ∈ ℙ{i''})
Proof
Definitions occuring in Statement : 
coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y])
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y])
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
coSet_wf, 
subtype_rel_wf, 
subtype_rel_self, 
equal_wf, 
subtype_coSet, 
coSet_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
extract_by_obid, 
inhabitedIsType, 
hypothesisEquality, 
universeEquality, 
productEquality, 
cumulativity, 
thin, 
instantiate, 
isectElimination, 
productElimination, 
applyEquality, 
because_Cache, 
hypothesis_subsumption, 
dependent_pairEquality_alt, 
functionExtensionality
Latex:
\mforall{}[R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  (coSet-bisimulation\{i:l\}(x,y.R[x;y])  \mmember{}  \mBbbP{}\{i''\})
Date html generated:
2019_10_31-AM-06_32_46
Last ObjectModification:
2018_11_08-PM-05_58_47
Theory : constructive!set!theory
Home
Index