Nuprl Lemma : coSet-bisimulation_wf

[R:coSet{i:l} ⟶ coSet{i:l} ⟶ ℙ']. (coSet-bisimulation{i:l}(x,y.R[x;y]) ∈ ℙ{i''})


Proof




Definitions occuring in Statement :  coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y]) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coSet-bisimulation: coSet-bisimulation{i:l}(x,y.R[x; y]) prop: all: x:A. B[x] implies:  Q and: P ∧ Q so_apply: x[s1;s2] subtype_rel: A ⊆B
Lemmas referenced :  coSet_wf subtype_rel_wf subtype_rel_self equal_wf subtype_coSet coSet_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType extract_by_obid inhabitedIsType hypothesisEquality universeEquality productEquality cumulativity thin instantiate isectElimination productElimination applyEquality because_Cache hypothesis_subsumption dependent_pairEquality_alt functionExtensionality

Latex:
\mforall{}[R:coSet\{i:l\}  {}\mrightarrow{}  coSet\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  (coSet-bisimulation\{i:l\}(x,y.R[x;y])  \mmember{}  \mBbbP{}\{i''\})



Date html generated: 2019_10_31-AM-06_32_46
Last ObjectModification: 2018_11_08-PM-05_58_47

Theory : constructive!set!theory


Home Index