Nuprl Lemma : comem_wf
∀[s,x:coSet{i:l}].  (comem{i:l}(x;s) ∈ ℙ')
Proof
Definitions occuring in Statement : 
comem: comem{i:l}(x;s)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
comem: comem{i:l}(x;s)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set-item_wf, 
coSet_wf, 
equal_wf, 
set-dom_wf, 
exists_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s,x:coSet\{i:l\}].    (comem\{i:l\}(x;s)  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-09_50_11
Last ObjectModification:
2018_07_11-PM-10_42_54
Theory : constructive!set!theory
Home
Index