Nuprl Lemma : cosetTC-unique

a,s:coSet{i:l}.
  ((a ⊆ s)
   transitive-set(s)
   (∀s':coSet{i:l}. ((a ⊆ s')  transitive-set(s')  (s ⊆ s')))
   seteq(s;cosetTC(a)))


Proof




Definitions occuring in Statement :  transitive-set: transitive-set(s) setsubset: (a ⊆ b) cosetTC: cosetTC(a) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: cand: c∧ B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  transitive-set_wf setsubset_wf coSet_wf all_wf cosetTC-least cosetTC-transitive cosetTC-contains cosetTC_wf seteq-iff-setsubset
Rules used in proof :  functionEquality cumulativity lambdaEquality sqequalRule instantiate because_Cache independent_pairFormation independent_functionElimination productElimination hypothesis isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,s:coSet\{i:l\}.
    ((a  \msubseteq{}  s)
    {}\mRightarrow{}  transitive-set(s)
    {}\mRightarrow{}  (\mforall{}s':coSet\{i:l\}.  ((a  \msubseteq{}  s')  {}\mRightarrow{}  transitive-set(s')  {}\mRightarrow{}  (s  \msubseteq{}  s')))
    {}\mRightarrow{}  seteq(s;cosetTC(a)))



Date html generated: 2018_07_29-AM-10_03_14
Last ObjectModification: 2018_07_18-PM-08_49_26

Theory : constructive!set!theory


Home Index