Nuprl Lemma : cosetTC-contains

a:coSet{i:l}. (a ⊆ cosetTC(a))


Proof




Definitions occuring in Statement :  setsubset: (a ⊆ b) cosetTC: cosetTC(a) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q cosetTC: cosetTC(a) uall: [x:A]. B[x] member: t ∈ T top: Top setmem: (x ∈ s) coWmem: coWmem(a.B[a];z;w) exists: x:A. B[x] seteq: seteq(s1;s2) less_than: a < b squash: T less_than': less_than'(a;b) copath-length: copath-length(p) pi1: fst(t) copath-cons: copath-cons(b;x) copath-nil: () true: True and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] coSet: coSet{i:l} subtype_rel: A ⊆B nat: copath-at: copath-at(w;p) coPath-at: coPath-at(n;w;p) ifthenelse: if then else fi  eq_int: (i =z j) bfalse: ff subtract: m btrue: tt coW-item: coW-item(w;b) pi2: snd(t) prop: rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  setmem-mk-coset istype-void copath-cons_wf istype-universe copath-nil_wf coW-item_wf istype-less_than copath-length_wf coW-equiv_wf copath-at_wf setmem_wf coSet_wf setsubset-iff cosetTC_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality_alt voidElimination hypothesis sqequalRule productElimination dependent_pairFormation_alt independent_pairFormation natural_numberEquality imageMemberEquality hypothesisEquality baseClosed dependent_set_memberEquality_alt universeEquality lambdaEquality_alt instantiate because_Cache applyEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry universeIsType dependent_functionElimination independent_functionElimination

Latex:
\mforall{}a:coSet\{i:l\}.  (a  \msubseteq{}  cosetTC(a))



Date html generated: 2019_10_31-AM-06_33_50
Last ObjectModification: 2018_12_13-PM-02_29_30

Theory : constructive!set!theory


Home Index