Nuprl Lemma : cosetTC-contains
∀a:coSet{i:l}. (a ⊆ cosetTC(a))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b)
, 
cosetTC: cosetTC(a)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cosetTC: cosetTC(a)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
setmem: (x ∈ s)
, 
coWmem: coWmem(a.B[a];z;w)
, 
exists: ∃x:A. B[x]
, 
seteq: seteq(s1;s2)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
copath-length: copath-length(p)
, 
pi1: fst(t)
, 
copath-cons: copath-cons(b;x)
, 
copath-nil: ()
, 
true: True
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
coSet: coSet{i:l}
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
copath-at: copath-at(w;p)
, 
coPath-at: coPath-at(n;w;p)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
subtract: n - m
, 
btrue: tt
, 
coW-item: coW-item(w;b)
, 
pi2: snd(t)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
setmem-mk-coset, 
istype-void, 
copath-cons_wf, 
istype-universe, 
copath-nil_wf, 
coW-item_wf, 
istype-less_than, 
copath-length_wf, 
coW-equiv_wf, 
copath-at_wf, 
setmem_wf, 
coSet_wf, 
setsubset-iff, 
cosetTC_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
sqequalRule, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
universeEquality, 
lambdaEquality_alt, 
instantiate, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}a:coSet\{i:l\}.  (a  \msubseteq{}  cosetTC(a))
Date html generated:
2019_10_31-AM-06_33_50
Last ObjectModification:
2018_12_13-PM-02_29_30
Theory : constructive!set!theory
Home
Index