Nuprl Lemma : copath-cons_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[b:coW-dom(a.B[a];w)]. ∀[p:copath(a.B[a];coW-item(w;b))].
  (copath-cons(b;p) ∈ copath(a.B[a];w))


Proof




Definitions occuring in Statement :  copath-cons: copath-cons(b;x) copath: copath(a.B[a];w) coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath: copath(a.B[a];w) copath-cons: copath-cons(b;x) coPath: coPath(a.B[a];w;n) nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  top: Top bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  ge: i ≥  int_upper: {i...}
Lemmas referenced :  decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int set_subtype_base int_subtype_base coPath_wf subtract_wf not-equal-2 minus-minus coW-item_wf top_wf upper_subtype_nat nat_properties nequal-le-implies coW-dom_wf copath_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality extract_by_obid dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination isectElimination imageMemberEquality baseClosed imageElimination applyEquality because_Cache minusEquality equalityElimination isect_memberEquality voidEquality dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity lambdaEquality functionExtensionality hypothesis_subsumption productEquality intEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[b:coW-dom(a.B[a];w)].
\mforall{}[p:copath(a.B[a];coW-item(w;b))].
    (copath-cons(b;p)  \mmember{}  copath(a.B[a];w))



Date html generated: 2018_07_25-PM-01_39_57
Last ObjectModification: 2018_06_01-AM-10_01_56

Theory : co-recursion


Home Index