Nuprl Lemma : cosetTC_wf2
∀[a:Set{i:l}]. (cosetTC(a) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
cosetTC: cosetTC(a)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
prop: ℙ
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
Set: Set{i:l}
, 
Wsup: Wsup(a;b)
, 
mk-coset: mk-coset(T;f)
, 
cosetTC: cosetTC(a)
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
Set_wf, 
nat_wf, 
copath-length_wf, 
less_than_wf, 
copath_wf, 
Wsup_wf, 
copath-at-W, 
W-subtype-coW
Rules used in proof : 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
setEquality, 
cumulativity, 
instantiate, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
thin, 
applyEquality, 
hypothesisEquality, 
cut, 
sqequalHypSubstitution, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:Set\{i:l\}].  (cosetTC(a)  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-10_00_23
Last ObjectModification:
2018_07_19-AM-10_24_03
Theory : constructive!set!theory
Home
Index