Nuprl Lemma : copath-at-W
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])]. ∀[p:copath(a.B[a];w)].  (copath-at(w;p) ∈ W(A;a.B[a]))
Proof
Definitions occuring in Statement : 
copath-at: copath-at(w;p), 
copath: copath(a.B[a];w), 
W: W(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
pi2: snd(t), 
coW-item: coW-item(w;b), 
pi1: fst(t), 
coW-dom: coW-dom(a.B[a];w), 
ext-eq: A ≡ B, 
bfalse: ff, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
exposed-it: exposed-it, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
coPath: coPath(a.B[a];w;n), 
coPath-at: coPath-at(n;w;p), 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
top: Top, 
subtract: n - m, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
not: ¬A, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
copath-at: copath-at(w;p), 
copath: copath(a.B[a];w), 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW-item_wf, 
le_wf, 
not-le-2, 
coPath_wf, 
coW-dom_wf, 
coW_wf, 
W-ext, 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
eq_int_wf, 
top_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
W_wf, 
copath_wf, 
W-subtype-coW
Rules used in proof : 
dependent_set_memberEquality, 
productEquality, 
hypothesis_subsumption, 
promote_hyp, 
impliesFunctionality, 
equalityElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
minusEquality, 
intEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
independent_pairFormation, 
unionElimination, 
axiomEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
dependent_functionElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
because_Cache, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].    (copath-at(w;p)  \mmember{}  W(A;a.B[a]))
Date html generated:
2018_07_25-PM-01_39_03
Last ObjectModification:
2018_07_19-AM-10_18_55
Theory : co-recursion
Home
Index