Nuprl Lemma : emptyset-transitive

transitive-set({})


Proof




Definitions occuring in Statement :  transitive-set: transitive-set(s) emptyset: {}
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: false: False implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  setsubset_wf all_wf setmem_wf setmem-emptyset coSet_wf false_wf set-subtype-coSet emptyset_wf transitive-set-iff
Rules used in proof :  because_Cache functionEquality lambdaEquality instantiate isectElimination cumulativity hypothesisEquality impliesFunctionality allFunctionality addLevel voidElimination lambdaFormation independent_functionElimination productElimination sqequalRule applyEquality hypothesis thin dependent_functionElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
transitive-set(\{\})



Date html generated: 2018_07_29-AM-10_02_56
Last ObjectModification: 2018_07_18-PM-01_35_18

Theory : constructive!set!theory


Home Index