Nuprl Lemma : emptyset-transitive
transitive-set({})
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s), 
emptyset: {}
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
false: False, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
setsubset_wf, 
all_wf, 
setmem_wf, 
setmem-emptyset, 
coSet_wf, 
false_wf, 
set-subtype-coSet, 
emptyset_wf, 
transitive-set-iff
Rules used in proof : 
because_Cache, 
functionEquality, 
lambdaEquality, 
instantiate, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
impliesFunctionality, 
allFunctionality, 
addLevel, 
voidElimination, 
lambdaFormation, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
applyEquality, 
hypothesis, 
thin, 
dependent_functionElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
transitive-set(\{\})
 Date html generated: 
2018_07_29-AM-10_02_56
 Last ObjectModification: 
2018_07_18-PM-01_35_18
Theory : constructive!set!theory
Home
Index