Nuprl Lemma : setmem-emptyset
∀x:coSet{i:l}. ((x ∈ {}) 
⇐⇒ False)
Proof
Definitions occuring in Statement : 
emptyset: {}
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
false: False
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
emptyset: {}
, 
false: False
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
false_wf, 
emptyset_wf, 
set-subtype-coSet, 
setmem_wf, 
it_wf, 
mkset_wf, 
coSet-mem-Set-implies-Set, 
setmem-mkset
Rules used in proof : 
independent_functionElimination, 
productElimination, 
lambdaEquality, 
because_Cache, 
dependent_pairFormation, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
voidEquality, 
thin, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
sqequalHypSubstitution, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x:coSet\{i:l\}.  ((x  \mmember{}  \{\})  \mLeftarrow{}{}\mRightarrow{}  False)
Date html generated:
2018_07_29-AM-09_53_07
Last ObjectModification:
2018_07_18-AM-10_42_59
Theory : constructive!set!theory
Home
Index