Nuprl Lemma : setmem-mkset

T:Type. ∀f:T ⟶ Set{i:l}. ∀x:Set{i:l}.  ((x ∈ {f[t] t ∈ T}) ⇐⇒ ∃t:T. seteq(x;f[t]))


Proof




Definitions occuring in Statement :  setmem: (x ∈ s) seteq: seteq(s1;s2) mkset: {f[t] t ∈ T} Set: Set{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] mkset: {f[t] t ∈ T} set-item: set-item(s;x) set-dom: set-dom(s) pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x]
Lemmas referenced :  exists_wf seteq_wf setmem-iff mkset_wf setmem_wf iff_wf set-dom_wf set-item_wf Set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality because_Cache addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  Set\{i:l\}.  \mforall{}x:Set\{i:l\}.    ((x  \mmember{}  \{f[t]  |  t  \mmember{}  T\})  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:T.  seteq(x;f[t]))



Date html generated: 2018_05_22-PM-09_49_32
Last ObjectModification: 2018_05_16-PM-01_31_29

Theory : constructive!set!theory


Home Index