Nuprl Lemma : existssetmem_wf

[A:coSet{i:l}]. ∀[P:{a:coSet{i:l}| (a ∈ A)}  ⟶ ℙ].  (∃a∈A.P[a] ∈ ℙ)


Proof




Definitions occuring in Statement :  existssetmem: a∈A.P[a] setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] prop: subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] existssetmem: a∈A.P[a] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set-item_wf set-item-mem setmem_wf coSet_wf set-dom_wf exists_wf
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality dependent_functionElimination universeEquality cumulativity because_Cache setEquality functionExtensionality applyEquality lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:coSet\{i:l\}].  \mforall{}[P:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}].    (\mexists{}a\mmember{}A.P[a]  \mmember{}  \mBbbP{})



Date html generated: 2018_07_29-AM-10_00_45
Last ObjectModification: 2018_07_18-PM-01_18_55

Theory : constructive!set!theory


Home Index