Nuprl Lemma : fun-graph_wf2

[b:Set{i:l}]. ∀[f:(x:Set{i:l} × (x ∈ b)) ⟶ Set{i:l}].  (fun-graph(b;f) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  fun-graph: fun-graph(b;f) Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  so_apply: x[s] prop: so_lambda: λ2x.t[x] mkset: {f[t] t ∈ T} Wsup: Wsup(a;b) mk-set: f"(T) subtype_rel: A ⊆B fun-graph: fun-graph(b;f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  Set_wf set-subtype-coSet mk-set_wf setmem_wf mem-mk-set_wf2 orderedpairset_wf2 mkset_wf set-subtype subtype-set
Rules used in proof :  isect_memberEquality cumulativity productEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache functionExtensionality dependent_pairEquality lambdaEquality isectElimination rename thin productElimination sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid hypothesis_subsumption sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[b:Set\{i:l\}].  \mforall{}[f:(x:Set\{i:l\}  \mtimes{}  (x  \mmember{}  b))  {}\mrightarrow{}  Set\{i:l\}].    (fun-graph(b;f)  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_09_09
Last ObjectModification: 2018_07_18-PM-05_05_39

Theory : constructive!set!theory


Home Index