Nuprl Lemma : mem-mk-set_wf2
∀[T:Type]. ∀[f:T ⟶ coSet{i:l}]. ∀[t:T].  (mem-mk-set(f;t) ∈ (f t ∈ f"(T)))
Proof
Definitions occuring in Statement : 
mem-mk-set: mem-mk-set(f;t), 
mk-set: f"(T), 
setmem: (x ∈ s), 
coSet: coSet{i:l}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
exists: ∃x:A. B[x], 
seteq: seteq(s1;s2), 
pi2: snd(t), 
pi1: fst(t), 
coW-dom: coW-dom(a.B[a];w), 
coW-item: coW-item(w;b), 
coWmem: coWmem(a.B[a];z;w), 
Wsup: Wsup(a;b), 
setmem: (x ∈ s), 
mk-set: f"(T), 
mem-mk-set: mem-mk-set(f;t), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteqweaken_wf, 
equal_wf, 
coSet_wf, 
seteq_wf
Rules used in proof : 
dependent_functionElimination, 
instantiate, 
functionExtensionality, 
universeEquality, 
cumulativity, 
functionEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
because_Cache, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].  \mforall{}[t:T].    (mem-mk-set(f;t)  \mmember{}  (f  t  \mmember{}  f"(T)))
Date html generated:
2018_07_29-AM-10_08_29
Last ObjectModification:
2018_07_18-PM-00_28_56
Theory : constructive!set!theory
Home
Index