Nuprl Lemma : implies-allsetmem
∀A:coSet{i:l}. ∀[P:{a:coSet{i:l}| (a ∈ A)}  ⟶ ℙ]. ((∀a:coSet{i:l}. ((a ∈ A) 
⇒ P[a])) 
⇒ ∀a∈A.P[a])
Proof
Definitions occuring in Statement : 
allsetmem: ∀a∈A.P[a]
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
mk-coset: mk-coset(T;f)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
set-dom: set-dom(s)
, 
set-item: set-item(s;x)
, 
allsetmem: ∀a∈A.P[a]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setmem_wf, 
coSet_wf, 
all_wf, 
setmem-coset, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
universeEquality, 
setEquality, 
dependent_set_memberEquality, 
functionEquality, 
cumulativity, 
lambdaEquality, 
isectElimination, 
instantiate, 
independent_functionElimination, 
dependent_functionElimination, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesis_subsumption, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}[P:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  {}\mRightarrow{}  P[a]))  {}\mRightarrow{}  \mforall{}a\mmember{}A.P[a])
Date html generated:
2018_07_29-AM-10_00_35
Last ObjectModification:
2018_07_18-PM-04_50_08
Theory : constructive!set!theory
Home
Index