Nuprl Lemma : loopset-transitive

transitive-set(loopset())


Proof




Definitions occuring in Statement :  transitive-set: transitive-set(s) loopset: loopset()
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  seteq_weakening setsubset_functionality setsubset-iff setsubset_wf all_wf setmem_wf setmem-loopset coSet_wf seteq_wf loopset_wf transitive-set-iff
Rules used in proof :  because_Cache functionEquality lambdaEquality sqequalRule instantiate cumulativity impliesFunctionality allFunctionality addLevel hypothesisEquality isectElimination lambdaFormation independent_functionElimination productElimination hypothesis thin dependent_functionElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
transitive-set(loopset())



Date html generated: 2018_07_29-AM-10_02_59
Last ObjectModification: 2018_07_21-PM-00_35_11

Theory : constructive!set!theory


Home Index