Nuprl Lemma : mem-mk-set_wf
∀[T:Type]. ∀[f:T ⟶ coSet{i:l}]. ∀[t:T].  (mem-mk-set(f;t) ∈ (f t ∈ mk-coset(T;f)))
Proof
Definitions occuring in Statement : 
mem-mk-set: mem-mk-set(f;t)
, 
setmem: (x ∈ s)
, 
mk-coset: mk-coset(T;f)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
seteq: seteq(s1;s2)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW-item: coW-item(w;b)
, 
coWmem: coWmem(a.B[a];z;w)
, 
setmem: (x ∈ s)
, 
mk-coset: mk-coset(T;f)
, 
mem-mk-set: mem-mk-set(f;t)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteqweaken_wf, 
equal_wf, 
coSet_wf, 
seteq_wf
Rules used in proof : 
dependent_functionElimination, 
instantiate, 
universeEquality, 
functionEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
because_Cache, 
cumulativity, 
functionExtensionality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  coSet\{i:l\}].  \mforall{}[t:T].    (mem-mk-set(f;t)  \mmember{}  (f  t  \mmember{}  mk-coset(T;f)))
Date html generated:
2018_07_29-AM-10_08_25
Last ObjectModification:
2018_07_18-PM-00_28_23
Theory : constructive!set!theory
Home
Index