Nuprl Lemma : set-part-greatest
∀s:coSet{i:l}. ((set-part(s) ⊆ s) ∧ (∀x:Set{i:l}. ((x ⊆ s) ⇒ (x ⊆ set-part(s)))))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b), 
set-part: set-part(s), 
Set: Set{i:l}, 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
cand: A c∧ B, 
and: P ∧ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
Set-isSet, 
setsubset-iff2, 
setmem_wf, 
setmem-set-part, 
set-part_wf, 
setsubset-iff, 
coSet_wf, 
Set_wf, 
set-subtype-coSet, 
setsubset_wf
Rules used in proof : 
because_Cache, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
independent_pairFormation, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:coSet\{i:l\}.  ((set-part(s)  \msubseteq{}  s)  \mwedge{}  (\mforall{}x:Set\{i:l\}.  ((x  \msubseteq{}  s)  {}\mRightarrow{}  (x  \msubseteq{}  set-part(s)))))
 Date html generated: 
2018_07_29-AM-10_01_29
 Last ObjectModification: 
2018_07_25-PM-04_01_03
Theory : constructive!set!theory
Home
Index