Nuprl Lemma : Set-isSet

[a:Set{i:l}]. isSet(a)


Proof




Definitions occuring in Statement :  isSet: isSet(w) Set: Set{i:l} uall: [x:A]. B[x]
Definitions unfolded in proof :  and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: prop: implies:  Q subtype_rel: A ⊆B squash: T all: x:A. B[x] coW-wfdd: coW-wfdd(a.B[a];w) so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] Set: Set{i:l} isSet: isSet(w)
Lemmas referenced :  W_wf copathAgree_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties copath-length_wf equal_wf all_wf W-subtype-coW copath_wf nat_wf W-wfdd
Rules used in proof :  instantiate independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality addEquality dependent_set_memberEquality rename setElimination functionExtensionality intEquality applyEquality because_Cache cumulativity functionEquality setEquality baseClosed imageMemberEquality imageElimination dependent_functionElimination hypothesis hypothesisEquality lambdaEquality universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[a:Set\{i:l\}].  isSet(a)



Date html generated: 2018_07_29-AM-09_50_43
Last ObjectModification: 2018_07_24-PM-00_04_25

Theory : constructive!set!theory


Home Index