Nuprl Lemma : Set-isSet
∀[a:Set{i:l}]. isSet(a)
Proof
Definitions occuring in Statement : 
isSet: isSet(w)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
coW-wfdd: coW-wfdd(a.B[a];w)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
Set: Set{i:l}
, 
isSet: isSet(w)
Lemmas referenced : 
W_wf, 
copathAgree_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
copath-length_wf, 
equal_wf, 
all_wf, 
W-subtype-coW, 
copath_wf, 
nat_wf, 
W-wfdd
Rules used in proof : 
instantiate, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
addEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
functionExtensionality, 
intEquality, 
applyEquality, 
because_Cache, 
cumulativity, 
functionEquality, 
setEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
universeEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[a:Set\{i:l\}].  isSet(a)
Date html generated:
2018_07_29-AM-09_50_43
Last ObjectModification:
2018_07_24-PM-00_04_25
Theory : constructive!set!theory
Home
Index